“On the Use of a Block Analog of the Gerschgorin Circle-Theorem in the Design of Decentralized Control of a Class of Large-Scale Systems”
Authors: Ole A. Solheim,Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1981, Vol 2, No 2, pp. 107-118.
Keywords: Decentralized control, decentralized estimation, eigenvalues, stability, the block Gerschgorin theorem
Abstract: The paper deals with the design of decentralized control of interconnected dynamic systems. It is assumed that each subsystem has its own control input and that the interconnections are through the states of the other subsystems. The purpose of the present paper is to investigate the possibility of using the so-called block Gerschgorin theorem to evaluate the stability of the total system, given the local controllers. This theorem enables us to determine inclusion regions for the eigenvalues of the total system and these regions are usually sharper than those obtained by the usual Gerschgorin circle theorem.
PDF (1944 Kb) DOI: 10.4173/mic.1981.2.5
DOI forward links to this article:
[1] Ole A. Solheim (1983), doi:10.4173/mic.1983.4.3 |
[2] O. Egeland (1986), doi:10.1109/ROBOT.1986.1087605 |
[3] O. Touhami and M. Ferhi-Hamis (2006), doi:10.1109/SSST.2006.1619077 |
[4] M.K. Sundareshan and R.M. Elbanna (1991), doi:10.1109/9.85064 |
[1] FEINGOLD, D.G., VARGA, R.S. (1962). Block diagonally dominant matrices and generalizations of the Gerschgorin circle theorem, Pacific J. Math., 12, 1241-1250.
[2] KOVARIK, Z.V., OLESKY, D.D. (1974). Sharpness of generalized Gerschgorin disks, Linear Algebra and its Applications, 8, 455-482.
[3] POWERS, D.L. (1976). A block Gerschgorin theorem, Linear Algebra and its Applications, 13, 45-52.
[4] SANDELL, N.R. Jr., VARAIYA, P., ATHANS, M., SAFONOV, M.G. (1978). Survey of decentralized control methods for large scale systems, IEEE Trans. Autom. Control, 23, 108-128 doi:10.1109/TAC.1978.1101704
[5] SILJAK D.D., VUKCEVIC, M.B. (1978). On decentralized estimation, Int. J. Control, 27, 113-131 doi:10.1080/00207177808922351
[6] SINGH, M.G., TITLI, A. (1978). Systems: Decomposition, Optimization and Control, Oxford: Pergamon Press.
[7] SUNDARESHAN, M.K. (1977). Exponential stabilization of large-scale systems: Decentralized and multilevel schemes, IEEE Trans. Syst., Man and Cybern., 7, 478-483 doi:10.1109/TSMC.1977.4309678
BibTeX:
@article{MIC-1981-2-5,
title={{On the Use of a Block Analog of the Gerschgorin Circle-Theorem in the Design of Decentralized Control of a Class of Large-Scale Systems}},
author={Solheim, Ole A.},
journal={Modeling, Identification and Control},
volume={2},
number={2},
pages={107--118},
year={1981},
doi={10.4173/mic.1981.2.5},
publisher={Norwegian Society of Automatic Control}
};