“Multivariable adaptive control”
Authors: Hannu T. Toivonen,Affiliation: Åbo Akademi, Finland
Reference: 1984, Vol 5, No 1, pp. 19-45.
Keywords: Multivariable adaptive control
Abstract: In recent years there has been an extensive interest in adaptive and self-tuning controllers, and there is a vast literature on various adaptive algorithms. The purpose of the present paper is to review some common approaches for multi-variable adaptive control. The presentation concentrates on procedures which are based on stochastic controller design methods, but some close connections with other design techniques are also indicated.

DOI forward links to this article:
[1] H.T. TOIVONEN (1987), doi:10.1016/B978-0-12-012726-9.50009-1 |
[2] M. O. TADE, M. M. BAYOUMI and D. W. BACON (1988), doi:10.1080/00207728808547148 |
[3] PERTTI M. MÄKILÄ (1991), doi:10.1080/00207179108934193 |
[4] L. DUGARD and J. M. DION (1985), doi:10.1080/00207178508933425 |
[5] J. Carrillo, J.M. Dion, L. Dugard and R. Ortega (1986), doi:10.1016/B978-0-08-032554-5.50053-7 |
[1] ÅSTRÖM, K.J. (1970). Introduction to Stochastic Control Theory, New York: Academic Press.
[2] ÅSTRÖM, K.J. (1977). Control of systems with uncertain parameters, Report TFRT 7115, Dep, of Automatic Control, Lund Institute of Technology, Lund, Sweden.
[3] ÅSTRÖM, K.J. (1978). Stochastic control problems, In Mathematical Control Theory, Lecture Notes in Mathematics, edited by W. A. Coppel.Berlin: Springer.
[4] ÅSTRÖM, K.J. (1983). Theory and applications of adaptive control - a survey, Automatica, 19, 471-486 doi:10.1016/0005-1098(83)90002-X
[5] ÅSTRÖM, K.J., BORISSON, U., LJUNG, L., WITTENMARK, B. (1977). Theory and applications of self-tuning regulators, Automatica, 13, 457-476 doi:10.1016/0005-1098(77)90067-X
[6] ÅSTRÖM, K.J., WITTENMARK, B. (1973). On self-tuning regulators, Automatica, 9, 185-199 doi:10.1016/0005-1098(73)90073-3
[7] ÅSTRÖM, K.J., WITTENMARK, B. (1974). Analysis of a self-tuning regulator for non-minimum phase systems, Proceedings, IFAC Symposium on Stochastic Control, Budapest.
[8] ÅSTRÖM, K.J., ZHAO-YING, Z. (1982). A linear quadratic Gaussian self-tuner, Proceedings, Workshop on Adaptive Control, Florence, Italy.
[9] ATHANS, M. (1971). The role and use of the stochastic linear-quadratic-gaussian problem in control system design, IEEE Trans. Autom. Control, AC-16, 529-552 doi:10.1109/TAC.1971.1099818
[10] BARTOLINI, G., CASALINO, G., DAVOLI, F., MINCIARDI, R., ZOPPOLI, R. (1982). Efficient algorithms for multivariable adaptive control: the ICOF scheme, Control and Computers, 10, 58-62.
[11] BIERMAN, G. (1977). Factorization Methods for Discrete Estimation, New York: Academic Press.
[12] BORISSON, U. (1975). Self-tuning regulators - industrial applications and multivariable theory, Report 7513, Dep. of Automatic Control, Lund Institute of Technology, Lund, Sweden.
[13] BORISSON, U. (1979). Self-tuning regulators for a class of multivariable systems, Automatica, 15, 209-215 doi:10.1016/0005-1098(79)90071-2
[14] CLARKE, D. W., GAWTHROP, P. J. (1975). Self-tuning controller, Proc. IEE, 929-934.
[15] CLARKE, D. W., GAWTHROP, P.J. (1979). Self-tuning control, Proc. IEE, 126-D, 633-640.
[16] CLARKE, D.W., GAWTHROP, P.J. (1981). Implementation and application of microprocessor-based self-tuners, Automatica, 17, 233-244 doi:10.1016/0005-1098(81)90098-4
[17] FJELD, M., WILLEMS, R.G. (1981). Self-tuning regulators - the software way, Control Engineering, 99-102.
[18] FORTESCUE, T.R., KERSHENBAUM, L.S., YDSTIE, B.E. (1981). Implementation of self-tuning regulators with variable forgetting factors, Automatica, 17, 831-835 doi:10.1016/0005-1098(81)90070-4
[19] FURUTA, K., PAQUET, J.G. (1975). Determination of matrix transfer functions in the form of matrix fractions from input-output observations, IEEE Trans. Autom. Control, AC-20, 392-396 doi:10.1109/TAC.1975.1100982
[20] GOODWIN, G.C., DUGARD, L. (1983). Stochastic adaptive control with known and unknown interactor matrices, Preprints of the IFAC Workshop on Adaptive Systems in Control and Signal Processing, San Francisco.
[21] GOODWIN, G.C., MCINNIS, B.C., WANG, J.C. (1982). Model reference adaptive control for systems having non-square transfer functions, Proceedings, 21st IEEE Conference on Decision and Control, Orlando.
[22] GOODWIN, G.C., PAYNE, R.L. (1977). Dynamic System Identification: Experiment Design and Data Analysis, New York : Academic Press.
[23] GOODWIN, G.C., RAMADGE, P.J., CAINES, P.E. (1981). Discrete time stochastic adaptive control, SIAM J. Control Optim., 19, 829-853 doi:10.1137/0319052
[24] GUSTAVSSON, I., LJUNG, L., SÖDERSTRÖM, T. (1977). Identification of processes in closed-loop - identifiability and accuracy aspects, Automatica, 13, 59-75 doi:10.1016/0005-1098(77)90009-7
[25] HÄGGLUND, T. (1983). Recursive least squares identification with forgetting of old data, Report TFRT-7254, Dep. of Automatic Control, Lund Institute of Technology, Lund, Sweden.
[26] HÄGGLUND, T. (1983). The problem of forgetting old data in recursive estimation, Preprints of the IFAC Workshop on Adaptive Systems in Control and Signal Processing, San Francisco.
[27] HARRIS, C.J., BILLINGS, S.A. (1981). Self-Tuning and Adaptive Control: Theory and Application, London: Peter Peregrinus Ltd.
[28] KALMAN, R.E. (1958). Design of a self-optimizing control system, Am. Soc. Mech. Engr. Trans., 80, 468-478.
[29] KEVICZKY, L.., KUMAR, K.S.P. (1981). Multivariable self-tuning regulator with generalized cost function, Int. J. Control, 33, 913-921 doi:10.1080/00207178108922963
[30] KOIVO, H.N. (1980). A multivariable self-tuning controller, Automatica, 16, 351-366 doi:10.1016/0005-1098(80)90020-5
[31] LAM, K.P. (1980). D Phil thesis, Oxford University.
[32] LANDAU, I.D. (1979). Adaptive Control - The Model Reference Approach, New York: Marcel Dekker.
[33] LJUNG, L. (1977). On positive real transfer functions and the convergence of some recursions, IEEE Trans. Autom. Control, AC-22, 539-551 doi:10.1109/TAC.1977.1101552
[34] LJUNG, L. (1977). Analysis of recursive stochastic algorithms, IEEE Trans. Autom. Control, AC-22, 551-575 doi:10.1109/TAC.1977.1101561
[35] LJUNG, L. (1978). Convergence of an adaptive filter algorithm, Int. J. Control, 27, 673-693 doi:10.1080/00207177808922403
[36] LJUNG, L. (1980). The ODE approach to the analysis of adaptive control systems - possibilities and limitations, Proceedings, 1980 Joint Automatic Control Conference, San Francisco.
[37] LJUNG, L., WITTENMARK, B. (1974). Asymptotic properties of self-tuning regulators, Report 7404, Dep. of Automatic Control, Lund Institute of Technology, Lund, Sweden.
[38] MACGREGOR, J.F. (1973). Optimal discrete stochastic control theory for process application, Can. J. Chem. Engng, 51, 468-478 doi:10.1002/cjce.5450510412
[39] MÄKILÄ, P.M. (1982). Self-tuning control with linear input constraints, Optimal Control Appl. and Methods, 3, 337-353.
[40] MÄKILÄ, P.M., WESTERLUND, T., TOIVONEN, H.T. (1984). Constrained linear quadratic gaussian control with process applications, Automatica, 20, 15-29 doi:10.1016/0005-1098(84)90061-X
[41] MENGA, G., MOSOV, E. (1980). MUSMAR : multivariable adaptive regulators based on multistep cost functionals, In Advances in Control, edited by D. G. Lainiotis and N. S. Tzannes.D. Reidel Publishing Company.
[42] MODÉN, P.E., SÖDERSTRÖM, T. (1982). Stationary performance of linear stochastic systems under single-step optimal control, IEEE Trans. Autom. Control, AC-23, 214-216 doi:10.1109/TAC.1982.1102889
[43] MOSCA, E., ZAPPA, G., MANFREDI, C. (1982). Robust adaptive prediction and control by MUSMAR techniques, Proceedings, 6th IFAC Symposium on Identification and System Parameter Estimation, Arlington.
[44] NARENDARA, K.S., MONOPOLI, R.V. (1980). Applications of Adaptive Control, New York: Academic Press.
[45] PANOSSIAN, H., LEONIDES, C.T. (1983). On discrete-time Riccati-like matrix difference equations with random coefficients, Int. J. Systems Sci., 14, 385-407 doi:10.1080/00207728308926465
[46] PETERKA, V. (1970). Adaptive digital regulation of noisy systems, IFAC Symposium on Identification and Process Parameter Estimation, Prague.
[47] PETERKA, V. (1975). A square root filter for real time multivariate regression, Kybernetika, 11, 53-67.
[48] PETERKA, V., ÅSTRÖM, K.J. (1973). Control of multivariable systems with unknown but constant parameters, Proceedings, 3rd IFAC Symposium on Identification and System Parameter Estimation, The Hague.
[49] SÖDERSTRÖM, T., LJUNG, L., GUSTAVSSON, I. (1978). A theoretical analysis of recursive identification methods, Automatica, 14, 231-244 doi:10.1016/0005-1098(78)90088-2
[50] TANTTU, J.T., KOIVO, H. (1983). A multivariable self-tuning controller: different delays in the control signal, Proceedings of the IASTED Symposium, Copenhagen.
[51] TOIVONEN, H.T. (1981). PhD thesis, Dep. Chem. Eng., Åbo Akademi, Turku, Finland.
[52] TOIVONEN, H.T. (1983). Variance constrained self-tuning control, Automatica, 19, 415-418 doi:10.1016/0005-1098(83)90056-0
[53] TOIVONEN, H.T. (1983). Self-tuning regulators with explicit variance restrictions, Int. J. Control, 38, 229-235 doi:10.1080/00207178308933071
[54] TOIVONEN, H.T. (1983). A self-tuning controller for systems with non-square transfer functions, Report 83-3, Process Control Lab., Åbo Akademi, Turku, Finland.
[55] WESTERLUND, T. (1980). Identification and control of an industrial dry process cement kiln, Proceedings, 1980 Joint Automatic Control Conference, San Francisco.
[56] WITTENMARK, B. (1973). A self-tuning regulator, Report 7311, Dep. of Automatic Control. Lund Institute of Technology, Lund, Sweden.
[57] WITTENMARK, B. (1975). Stochastic adaptive control methods - a survey, Int. J. Control, 21, 705-730 doi:10.1080/00207177508922026
BibTeX:
@article{MIC-1984-1-2,
title={{Multivariable adaptive control}},
author={Toivonen, Hannu T.},
journal={Modeling, Identification and Control},
volume={5},
number={1},
pages={19--45},
year={1984},
doi={10.4173/mic.1984.1.2},
publisher={Norwegian Society of Automatic Control}
};