“General Analysis of Directional Ocean Wave Data from Heave Pitch Roll Buoys”

Authors: Donald M. Wiberg, Fred Baskin and R.D. Lindsay,
Affiliation: NTNU, Department of Engineering Cybernetics and The Aerospace Corporation, California
Reference: 1984, Vol 5, No 2, pp. 71-101.

Keywords: Lattices, least squares, recursive estimation, digital filtering, signal processing, communications, control systems, noise cancelling, spectral estimation, signal identification, channel equalization, adaptive arrays

Abstract: There are many practical applications of lattice form recursive linear least square algorithms (called lattices for short) in signal processing, communications, and control systems. The goal of this tutorial is to help practicing engineers to decide if lattices are appropriate for their particular projects.

PDF PDF (6154 Kb)        DOI: 10.4173/mic.1984.2.1

DOI forward links to this article:
[1] Won-Gul Hwang and Hyung-Eun Im (2006), doi:10.1007/BF02916321
[2] D. Wiberg and J. Gillis (1986), doi:10.1109/TAC.1986.1104397
[3] D. Wiberg and J. Gillis (1985), doi:10.1109/CDC.1985.268684
References:
[1] GOODWIN, G.C., PAYNE, R.L. (1977). Dynamic System Identification, Experimental Design and Data Analysis.Academic Press, N.Y.
[2] LEV-ARI, H., KAILATH, T. (1981). Schur and Levinson algorithms for nonstationary processes, Proceedings of IEEE Conference on Decision and Control, Dec. 1981, pp. 860-864.
[3] ÅSTRÖM, K.J., MAYNE, D.Q. (1982). A new algorithm for recursive estimation of controlled ARMA processes, Proceedings of IFAC Conference on Identification and System Parameter Estimation, Washington, D.C.. June 1982, pp. 122-126.
[4] BIERMAN, G.J. (1977). Factorization Methods for Discrete Sequential Estimation, Academic Press, N.Y.
[5] GAUSS, K.F. (1963). Theoria Motus Corportan Coelestium, 1809, translated as Theory of the Motion of the Heavenly Bodies Moving About the Sun in Conic Sections.Dover, N.Y.
[6] YULE, G.U. (1927). On a method of investigating periodicities in disturbed series, with special reference to Wolfer´s sunspot numbers, Phil. Trans. A, 267, 226 doi:10.1098/rsta.1927.0007
[7] LEVINSON, N. (1947). The Wiener RMS, root-mean-square error criterion in filter design and prediction. J. Math. Phys., 25, 261-278.
[8] KALMAN, R.E. (1960). A new approach to linear filtering and prediction problems, J. Basic Engineering, 82, 342-345.
[9] WIDROW, B., HOFF, M., Jr. (1960). Adaptive switching circuits, I.R.E. WESCON Conv. Record, Pt. 4, pp. 96-104.
[10] MORF, B., DICKINSON, B., KAILATH, T., VIEIRA, A. (1977). Efficient solutions of covariance equations for linear prediction, IEEE Trans.. Acoustics, Speech, and Signal Processing, 25, 429-435 doi:10.1109/TASSP.1977.1162989
[11] LEE, D.T.L., MORE, M., FRIEDLANDER, B. (1981). Recursive least squares ladder estimation algorithms, IEEE Trans. Acoustics, Speech, and Signal Processing, 29, 627-641 doi:10.1109/TASSP.1981.1163587
[12] FRIEDLANDER, B. (1982). Lattice filters for adaptive processing, Proc. IEEE, 70, 829-867.
[13] FRIEDLANDER, B. (1982). Lattice methods for spectral estimation, Proc. IEEE, 70, 990-1017.
[14] SATORIUS, E.H., PACK, J.D. (1980). A least squares adaptive lattice equalizer algorithm, Naval Ocean Systems Center Technical Report 575, Sept. 1980, San Diego, California 92152, U.S.A.
[15] PORAT, B., FRIEDLANDER, B., MORE, M. (1982). Square root covariance ladder algorithms, IEEE Trans. Automat. Control, 27, 813-829 doi:10.1109/TAC.1982.1103018
[16] MEDITCH, J.S. (1969). Stochastic Optimal Linear Estimation and Control, McGraw-Hill, New York.
[17] GILL, P.E., MURRAY, W., SAUNDERS, M.A. (1975). Methods for computing and modifying the LDV factors of a matrix, Mathematics of Computation, 29, 1051-1077 doi:10.2307/2005744
[18] MILLER, W., WRATHALL, C. (1980). Software for Roundoff Analysis of Matrix Algorithms, Academic Press, New York.
[19] LJUNG, L., SÖDERSTRÖM, T. (1983). Theory and Practice of Recursive Identification, MIT Press, Cambridge, MA.
[20] CLAERBOUT, J.F. (1976). Fundamentals of Geophysical Data Processing, McGraw-Hill, New York.
[21] WIBERG, D.M., BASKIN, F., LINDSAY, R.D. (1985). On the dynamics of recursive least squares and lattices, 7th IFAC Symposium on Identification and System Parameter Estimation, York, United Kingdom, July 1985.
[22] LJUNG, S., LJUNG, L. (1984). Error propagation properties of recursive least squares adaption algorithms, 9th IFAC Congress, Colloquium on System Identification, Budapest, 1984. An extended version will appear in Automatica.
[23] SAMSON, C., REDDY, V.U. (1983). Fixed point error analysis of the normalized ladder algorithm, IEEE Trans. Acoustics, Speech, and Signal Processing, 31, 1177-1191 doi:10.1109/TASSP.1983.1164205
[24] GRIFFITHS, L.J. (1977). A continuously adaptive filter implemented as a lattice structure, Proc. IEEE Conf. Acoustics, Speech, Sig. Proc., Hartford, C.T., May 1977, pp. 683-686.
[25] MAKHOUL, J. (1977). Stable and efficient lattice methods for linear prediction, IEEE Trans. Acoustics, Speech, and Signal Processing, 25, 423-428 doi:10.1109/TASSP.1977.1162979
[26] WIRERG, D.M., BASKIN, F., LINDSAY, R.D. (1983). Lattice form recursive linear least-square algorithms, especially for noise cancelling, Aerospace Report No. ATR8.9975-2, The Aerospace Corp., El Segundo, California 90009, U.S.A.


BibTeX:
@article{MIC-1984-2-1,
  title={{General Analysis of Directional Ocean Wave Data from Heave Pitch Roll Buoys}},
  author={Wiberg, Donald M. and Baskin, Fred and Lindsay, R.D.},
  journal={Modeling, Identification and Control},
  volume={5},
  number={2},
  pages={71--101},
  year={1984},
  doi={10.4173/mic.1984.2.1},
  publisher={Norwegian Society of Automatic Control}
};