“A Gyrocompass for Maritime Applications Based Upon Multivariable Control Theory”

Authors: Olav Egeland,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1984, Vol 5, No 4, pp. 179-194.

Keywords: Gyrocompass, maritime navigation, Kalman filtering, parameter estimation

Abstract: A gyrocompass is designed using multivariable control theory. The compass can be implemented with an inertial platform or as a strap-down system. Measurement noise caused by vessel acceleration is modeled and feedforward is taken from vessel speed. Though the model is of order 9, it has only three unknown parameters of which one can be chosen a priori. Parameter estimation is discussed. For simulation of the compass, a non-linear surface vessel model with 6 degrees of freedom and wave excitation is used.

PDF PDF (1954 Kb)        DOI: 10.4173/mic.1984.4.1

References:
[1] ÅSTRÖM, K.J., V. BORRISSON, L. LJUNG B. WITTENMARK. (1977). Theory and application of self-tuning regulators, Automatica, 13, 457 doi:10.1016/0005-1098(77)90067-X
[2] BLANKE, M., (1981). Ship Propulsion Losses Related to Automatic Steering and Prime Mover Control, Dissertation, Servolaboratory, Technical University of Denmark.
[3] BRITTING, K.R., (1971). Inertial Navigation Systems Analysis, Wiley Interscience.
[4] BROCK, L.D. G.T. SCHMIDT. (1970). General questions on Kalman filtering in navigation systems, In C.T. Leondes.ed. Theory and applications on Kalman filtering. NATO AGAR D AG-139.
[5] EZEKIEL, S. E. KNAUSSENBERGE, (1978). Laser Inertial Rotation Sensors, Proceedings of the SPIE, 157.
[6] GOODWIN, C. G. R. L. PAYNE. (1977). Dynamic System Identification, Academic Press: New York.
[7] LEONDES, C.T. (1970). Theory and applications of Kalman filtering, NATO AGARD AG-139.
[8] LJUNG, L. (1981). Analysis of a general recursive prediction error identification algorithm, Automatica, 71, 89-99 doi:10.1016/0005-1098(81)90086-8
[9] MAYBECK, P.S. (1979). Stochastic models, estimation and control, Vol. 1.Academic Press: New York.
[10] PRICE, W.G. R.E.D. BISHOP (1974). Probabilistic theory of ship dynamics, Chapman and Hall: London.
[11] SAELID, S. N.A. JENSSEN. (1983). Adaptive ship autopilot with wave filter, Modeling, Identification and Control, 4 doi:10.4173/mic.1983.1.3
[12] SAELID, S., N.A. JENSSEN J.G. BALCHEN. (1983). Design and analysis of a dynamic positioning system based on Kalman filtering and optimal control, IEEE Transactions on Automatic Control, 22, 331-339 doi:10.1109/TAC.1983.1103225
[13] SAELID, S. B. FOSS. (1983). Adaptive controllers with a vector variable forgetting factor, Proceedings IEEE CDC, San Antonio, 1488-1494.
[14] SCHMIDT, G.T. (1978). Strap-down Inertial Systems, NATO AGARD LS-95.
[15] TYSSØ, A. (1980). CYPROS - cybernetic program packages, Modeling, Identification and Control, 1, 1 doi:10.4173/mic.1980.4.2
[16] WRIGLEY, W. et al. (1969). Gyroscopic Theory, Design and Instrumentation, M.I.T. Press: Cambridge, Massachusetts.


BibTeX:
@article{MIC-1984-4-1,
  title={{A Gyrocompass for Maritime Applications Based Upon Multivariable Control Theory}},
  author={Egeland, Olav},
  journal={Modeling, Identification and Control},
  volume={5},
  number={4},
  pages={179--194},
  year={1984},
  doi={10.4173/mic.1984.4.1},
  publisher={Norwegian Society of Automatic Control}
};