“Maximum Likelihood Estimation of Seismic Impulse Response”
Authors: Bjørn Ursin and O. Holberg,Affiliation: NTNU
Reference: 1985, Vol 6, No 2, pp. 57-73.
Keywords: Maximum-likelihood estimation, seismic data processing, deconvolution
Abstract: A seismic trace is assumed to consist of a known signal pulse convolved with a reflection coefficient series plus a moving average noise process (colored noise). Multiple reflections and reverberations are assumed to be removed from the trace by conventional means. The method of maximum likelihood (ML) is used to estimate the reflection coefficients and the unknown noise parameters. If the reflection coefficients are known from well logs, the seismic pulse and the noise parameters can be estimated.
PDF (2144 Kb) DOI: 10.4173/mic.1985.2.1
References:
[1] ÅSTRÖM, K.J. (1980). Maximum likelihood and prediction error methods, Automatica, 16, 551-574 doi:10.1016/0005-1098(80)90078-3
[2] ÅSTRÖM, K.J. BOHLIN, T. (1966). Numerical identification of linear dynamic systems from normal operation records, in P.H. Hammond (ed.), Theory of Self-adaptive Control Systems (Plenum Press, New York).
[3] ÅSTRÖM, K.J. EYKHOFF, P. (1971). System identification - a survey, Automatica 7, 123-162 doi:10.1016/0005-1098(71)90059-8
[4] CHI, C.Y., MENDEL, J.M. HAMPSON, D. (1984). A computationally fast approach to maximum-likelihood deconvolution, Geophysics, 49, 550-565 doi:10.1190/1.1441690
[5] EKSTROM, M.P. (1973). A spectral characterization of the ill-conditioning in numerical deconvolution, IEEE Trans. on Audio and Electroacoustics, AU-21, no. 4, 344-348 doi:10.1109/TAU.1973.1162493
[6] KALLWEIT, R.S. WOOD, L.C. (1982). The limits of resolution of zero-phase wavelets, Geophysics, 47, 1035-1047 doi:10.1190/1.1441367
[7] GOODWIN, G.C. PAYNE, R.L. (1977). Dynamic System Identification: Experiment Design and Data Analysis, Academic Press, London.
[8] LJUNG, L. SÖDERSTRÖM, T. (1983). Theory and Practice of Recursive Identification, MIT Press, Cambridge.
[9] MENDEL, J.M. (1983). Optimal Seismic Deconvolution: An Estimation-based Approach, Academic Press, London.
[10] MOORE, J.J., GARBOW, B.S. HILLSTRØM, K.E. (1978). User guide for MINPACK-1, Argonne National Laboratory ANL-80-74.
[11] ÖZDEMIR, H. (1982). Seismic impulse response estimation by the maximum-likelihood and the least-squares methods, SINTEF Report STF28 A82033, Trondheim.
[12] ROBINSON, E.A. TREITEL, S. (1980). Geophysical Signal Analysis, Prentice-Hall, Englewood Cliffs.
[13] URSIN, B. ZHENG, Y. (1984). Identification of seismic reflections using singular value decomposition, Technical report, Petroleum Technology Research Institute, Trondheim.
[14] VAN RIEL, P. (1982). Seismic trace inversion, MSc Thesis, Delf University of Technology.
[15] VAN RIEL, P. BERKHOUT, A.J. (1983). Resolution in seismic trace inversion by parameter estimation, Submitted for publication in Geophysics.
[16] WOLFE, M.A. (1978). Numerical Methods for Unconstrained Optimization, Van Nostrand Reinhold, New York.
BibTeX:
@article{MIC-1985-2-1,
title={{Maximum Likelihood Estimation of Seismic Impulse Response}},
author={Ursin, Bjørn and Holberg, O.},
journal={Modeling, Identification and Control},
volume={6},
number={2},
pages={57--73},
year={1985},
doi={10.4173/mic.1985.2.1},
publisher={Norwegian Society of Automatic Control}
};