“Task Space Tracking for Manipulators”

Authors: Olav Egeland,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1985, Vol 6, No 2, pp. 91-101.

Keywords: Robots, optimal control

Abstract: For the purpose of controlling a manipulator in the task space, a linear model with task space position and velocity as state variables can be developed. This is done by means of exact compensation of the state-space model non-linearities using non-linear feedback. In this paper, feedback control for this linear state space model is developed using optimal control theory. Integral action is included to compensate for unmodeled forces and torques. In the resulting control system, the problem of transforming the task space trajectory to the joint space is avoided, and the controller parameters can be chosen to satisfy requirements specified in the task space. Simulation experiments show promising results.

PDF PDF (1048 Kb)        DOI: 10.4173/mic.1985.2.3

DOI forward links to this article:
[1] V. Øiestad, T. Pedersen, A. Folkvord, Å. Bjordal and P.G. Kvenseth (1987), doi:10.4173/mic.1987.1.5
References:
[1] ATHANS, M. FALB, P. (1966). Optimal Control, McGraw-Hill.
[2] BALCHEN, J.G., JENSSEN, N.A., MATHIESEN, E. SAELID, S. (1980). A dynamic positioning system based on Kalman filtering and optimal control, Modeling, Identification and Control, 1, 135-163 doi:10.4173/mic.1980.3.1
[3] FREUND, E. (1982). Fast non-linear control with arbitrary pole placement for industrial robots and manipulators, The International Journal of Robotics Research, 1, 65-78 doi:10.1177/027836498200100104
[4] LUH, J.Y.S. (1983). Conventional controller design for industrial robots - a tutorial, IEEE Trans. Systems, Man and Cybernetics, 13, 298-316.
[5] LUH, J.Y.S., WALKER, M.W., PAUL, R.P.C. (1980). On-line computational scheme for mechanical manipulators, J. Dynamic Systems, Measurement and Control, 102, 69-76.
[6] LUH, J.Y.S., WALKER, M.W., PAUL, R.P.C. (1980). Resolved acceleration control of mechanical manipulators, IEEE Trans. Automatic Control, 25, 468-474.
[7] LUO, G.L. SARIDIS, G.N. (1985). Optimal/PID formulation for control of robotic manipulators, Proc. 1985 IEEE Int. Conference on Robotics and Automation, St. Louis, Missouri, March 25-28, 1985, 621-626.
[8] PAUL, R.P.C. (1972). Modeling, trajectory calculation and servoing of a computer controller arm, Stanford Artifical Intelligence Lab., CA, A.I. memo 177, Sept. 1972.
[9] SARIDIS, G.N. (1983). Intelligent robotic control, IEEE Trans. Automatic Control, 28, 547-557 doi:10.1109/TAC.1983.1103278
[10] SPONG, M.W. VIDYASAGAR, M. (1985). Robust linear compensator design for non-linear robotic control, Proc. 1985 IEEE Int. Conference on Robotics and Automation, St. Louis, Missouri, March 25-28, 1985, 621-626.
[11] SYMON, K.R. (1971). Mechanics, Addison Wesley; Reading, Massachussetts.
[12] TARN, T.J., BEJCZY, A.K., ISIDORI, A., CHEN, Y. (1984). Non-linear feedback in robot arm control, Proc. 23rd IEEE Conference on Decision and Control, Las Vegas, Nevada, Dec. 12-14, 1984.
[13] WHITNEY, D.E. (1972). The mathematics of co-ordinated control of prosthetic arms and manipulators, J. Dynamic Systems, Measurement and Control, 94, 303-309.


BibTeX:
@article{MIC-1985-2-3,
  title={{Task Space Tracking for Manipulators}},
  author={Egeland, Olav},
  journal={Modeling, Identification and Control},
  volume={6},
  number={2},
  pages={91--101},
  year={1985},
  doi={10.4173/mic.1985.2.3},
  publisher={Norwegian Society of Automatic Control}
};