“Cartesian Trajectory Tracking for Manipulators Using Optimal Control Theory”

Authors: Olav Egeland,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1987, Vol 8, No 3, pp. 137-147.

Keywords: Robots, kinematically redundant manipulators, optimal control, tracking systems

Abstract: A Cartesian trajectory tracking system for manipulators is developed using optimal control theory. By including the Cartesian position in the state vector, transformation of the trajectory from Cartesian space to manipulator joint space is avoided, and the Jacobian matrix need not be inverted. The tracking system may also be applied to kinematically redundant manipulators. For this type of manipulator, singularities are avoided by choosing a suitable performance index in the optimal control problem. Simulation using a simple kinematically redundant manipulator shows that a small tracking error can be achieved with low motor torques.

PDF PDF (880 Kb)        DOI: 10.4173/mic.1987.3.2

DOI forward links to this article:
[1] Devendra P. Garg and Jun Yang (1990), doi:10.1016/0016-0032(90)90083-U
[2] O. Egeland, J.R. Sagli, S. Hendseth and F. Wilhelmsen (1989), doi:10.1109/ROBOT.1989.99978
[3] I.S. Hameed, R. Nagarajan and K.B. Mirza (1992), doi:10.1109/SICICI.1992.641675
References:
[1] ATHANS, M. FALB, P. (1966). Optimal Control, McGraw-Hill, New York.
[2] BRYSON, A.E. HO, Y.C. (1969). Applied Optimal Control, Blaisdell, New York.
[3] LUH, J.Y.S. (1983). Conventional controller design for industrial robots - a tutorial, I.E.E.E. Trans. Syst., Man and Cybernetics, 13, 298-316.
[4] LUH, J.Y.S., WALKER, M.W., PAUL, R.P.C. (1980). Resolved acceleration control of mechanical manipulators, I.E.E.E. Trans. Autom. Control, 25,468-474 doi:10.1109/TAC.1980.1102367
[5] LUH, J.Y.S., WALKER, M.W., PAUL, R.P.C. (1980). On-line computational scheme for mechanical manipulators, J. Dynamic Systems, Measurement and Control, 102, 69-76.
[6] PAUL, R.P.C. (1979). Manipulator cartesian path control, I.E.E.E. Trans. Syst., Man and Cybernetics, 9, 702-711 doi:10.1109/TSMC.1979.4310109
[7] SARIDIS, G.N. (1983). Intelligent robotic control, I.E.E.E. Trans. Autom. Control, 28, 547-557 doi:10.1109/TAC.1983.1103278
[8] SYMON, K.R. (1971). Mechanics, Addison Wesley, Reading, Massachusetts.
[9] TARN, T.J., BEJCZY, A.K., ISIDORI, A., CHEN, Y. (1984). Nonlinear feedback in robot arm control, Proc. 23rd I.E.E.E. Coherence on Decision and Control, Las Vegas, Nevada, Dec. 12-14, 1984.
[10] TAYLOR, R.H. (1979). Planning and execution of straight line manipulator trajectories, IBM J. Res. and Develop., 23, 253-264.
[11] WHITNEY, D.E. (1972). The mathematics of coordinated control of prosthetic arms and manipulators, J. Dynamic Systems, Measurement and Control, 94, 303-309.


BibTeX:
@article{MIC-1987-3-2,
  title={{Cartesian Trajectory Tracking for Manipulators Using Optimal Control Theory}},
  author={Egeland, Olav},
  journal={Modeling, Identification and Control},
  volume={8},
  number={3},
  pages={137--147},
  year={1987},
  doi={10.4173/mic.1987.3.2},
  publisher={Norwegian Society of Automatic Control}
};