“Learning Control of Redundant DOF Robots by Optimization of Parameterized Control Space”

Authors: Erling Lunde and Jens G. Balchen,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1988, Vol 9, No 4, pp. 207-222.

Keywords: Robots, learning control, kinematically redundant manipulators

Abstract: A framework for the learning control of robots based on a parameterized control space is doscussed. Emphasis is put on how to utilize stored motion knowledge. The principles are applied to an example of redundancy resolution for a simple manipulator. Global sub-optimal solutions for feedforward control are achieved using a simple optimization algorithm. A time-integral performance criterion is used.

PDF PDF (1811 Kb)        DOI: 10.4173/mic.1988.4.4

DOI forward links to this article:
[1] Erling Lunde and Jens G. Balchen (1990), doi:10.4173/mic.1990.2.4
[2] E. Lunde and J.G. Balchen (1990), doi:10.1109/IMC.1990.687309
[3] E. Lunde and J.G. Balchen (1990), doi:10.1109/ROBOT.1990.126222
References:
[1] ALBUS, J.S. (1975). A new approach to robot control: The Cerebellar Model Articulation Controller, CMAC. ASME J. Dyn. Sys., Meas. and Contr., 220-227, Sept. Vol. 97, No. 3.
[2] ARIMOTO, S., KAWAMURA, S., MIYAZAKI, F. (1984). Bettering operation of robots by learning, J. of Robotic Systems, 1, 123-140 doi:10.1002/rob.4620010203
[3] ATKESON, C.G., McINTYRE, J. (1986). Robot trajectory learning through practice, Proc. IEEE Int. Conf. on Rob. and Autom., 1737-1742, San Francisco.
[4] BROOKS, V.B. (1987). The Neural Basis of Motor Control, 129-148.Oxford Univ. Press, New York.
[5] CRAIG, J.J. (1988). Adaptive Control of Mechanical Manipulators, 85-99.Addison-Wesley, Reading, Massachusetts.
[6] EYKHOFF, P. (1974). System Identification, Wiley, New York.
[7] FLASHNER, H., BEUTER, A., ARABYAN, A. (1988). Fitting mathematical functions to joint kinematics during stepping: Implications for motor control, Biol. Cybern., 58, 91-99 doi:10.1007/BF00364155
[8] HAROPOKOS, E.G. (1986). Optimal learning control of mechanical manipulators in repetitive motions, Proc. IEEE Int. Cont on Rob. and Autom., 396-401, San Francisco.
[9] HAUSER . J.E. (1987). Learning control for a class of non-linear systems, Proc. 26th CDC, 859-860, Los Angeles.
[10] HOGAN, N., FLASH, T. (1987). Moving gracefully: Quantitative theories of motor coordination, Trends in Neurosci., 10, 170-174 doi:10.1016/0166-2236(87)90043-9
[11] HSU, N.-S., CHENG, B. (1981). Analysis and optimal control of time-varying linear systems via block-pulse functions, Int. J. Control, 33,1107-1122 doi:10.1080/00207178108922979
[12] KHATIB, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation, IEEE J. RA, 3,43-53 doi:10.1109/JRA.1987.1087068
[13] KIRCANSKI, M., VUKOBRATOYIC, M. (1984). Trajectory planning for redundant manipulators in the presence of obstacles, In A. Morecki.ed., Theory and practice of robots and manipulators, Proc. RoManSy ยด84, 57-63.
[14] KLEIN, C.A., HUANG, C.-H. (1985). Review of pseudoinverse control for use with kinematically redundant manipulators, IEEE Tr. SMC, 7,245-250.
[15] LEE, Y.W. (1960). Statistical Theory of Communication, Wiley, New York.
[16] LJUNG, L. (1987). System Identification: Theory for the User, Prentice-Hall, Englewood Cliffs, New Jersey.
[17] LUENBERGER, D. G. (1984). Linear and Non-linear Programming, Addison-Wesley, New York.
[18] LUNDE, E., EGELAND, O., BALCHEN, J.G. (1987). Dynamic control of kinematically redundant robotic manipulators, Modeling, Identification and Control, 8, 159-174 doi:10.4173/mic.1987.3.4
[19] MUKERJEE, A. (1988). Joint force sensing for unified motor learning, NATO ARW Sensor Det. and Sys.for Robotics 1987.Springer Verlag, Berlin.
[20] MUKERJEE, A., SASTRI, T. (1986). Robot learning: Transferring knowledge between trajectories, Texas Aand&M Univ., Comp. Sci. Dept., report TR-87-016.
[21] NAKAMURA, Y., HANAFUSA, H. (1987). Optimal redundancy control of robot manipulators, Int. J. Rob. Research, 6,32-42 doi:10.1177/027836498700600103
[22] RAIBERT, M.H. (1977). Analytical equations vs table look-up for manipulation: A unifying concept, Proc. 16th Conference on Decision and Control, 576-579, New Orleans.
[23] SARIDIS, G.N., LEE, C.-S.C. (1979). An approximation theory of optimal control for trainable manipulators, IEEE Trans. Systems, Man and Cybernetics, 9,152-159 doi:10.1109/TSMC.1979.4310171
[24] SUH, K.S., HOLLERBACH, J.M. (1987). Local versus global torque optimization of redundant manipulators, IEEE Int. Conf. on Rob. and Autom., 619-624, Raleigh.
[25] VLACH, J. (1969). Computerized Approximation and Synthesis of Linear Networks, Wiley, New York.
[26] VLASSENBROECK, J., VAN DOREN, R. (1988). A Chebychev technique for solving non-linear control problems, IEEE Trans. Automatic Control, 33,333-340 doi:10.1109/9.192187
[27] YOSHIKAWA, T. (1985). Manipulability and redundancy of robotic mechanisms, Proc. IEEE Int. Conf. on Rob. and Autom., 1004-1009, St. Louis.


BibTeX:
@article{MIC-1988-4-4,
  title={{Learning Control of Redundant DOF Robots by Optimization of Parameterized Control Space}},
  author={Lunde, Erling and Balchen, Jens G.},
  journal={Modeling, Identification and Control},
  volume={9},
  number={4},
  pages={207--222},
  year={1988},
  doi={10.4173/mic.1988.4.4},
  publisher={Norwegian Society of Automatic Control}
};