“Optimal continuous-path control for manipulators with redundant degrees of freedom”

Authors: Olav Egeland, Jan R. Sagli and Bård Jansen,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1989, Vol 10, No 2, pp. 77-89.

Keywords: Robots, optimal control, redundant manipulators

Abstract: A control system for macro-mini manipulators is presented. A position transformation from the end-effector reference to joint coordinates is found using kinematic optimization. Decoupling and optimal control is used to coordinate the motion of the macro and micro part. The redundant manipulator will then have the speed of the micro manipulator and the large workspace of the macro manipulator. When optimal control is used, the redundant manipulator may be even faster than the micro manipulator provided that a suitable performance index is used. The performance of the manipulator is optimized over the whole reference, and this will give better results than the purely kinematic instantaneous optimization which is the dominating technique in research literature.

PDF PDF (785 Kb)        DOI: 10.4173/mic.1989.2.2

DOI forward links to this article:
[1] J.R. Sagli and O. Egeland (1990), doi:10.1109/IMC.1990.687376
[2] O. Egeland, J.R. Sagli, S. Hendseth and F. Wilhelmsen (1989), doi:10.1109/ROBOT.1989.99978
[3] J.R. Sagli and O. Egeland (1991), doi:10.1109/ROBOT.1991.131773
[4] W. Miksch and D. Schroeder (1992), doi:10.1109/ROBOT.1992.220258
[5] O. Egeland and J.R. Sagli (1990), doi:10.1109/CDC.1990.203360
[6] T. C. Yih and Kun Ji (1995), doi:10.1007/978-3-642-79654-8_433
References:
[1] AHMAD, S., LUO, S. (1988). Coordinated motion control of multiple robotic devices for welding and redundancy coordination through constrained optimization in cartesian space, Proc. IEEE Int. Conference on Robotics and Automation, Philadelphia, Pennsylvania, April 24-29,1988, pp. 963-968.
[2] ATHANS, M., FALB, P.L. (1966). Optimal Control, McGraw-Hill, New York.
[3] BAKER, D.R., WAMPLER II, C.W. (1988). On the inverse kinematics of redundant manipulators, Int. J. Robotics Research, 7,3-21 doi:10.1177/027836498800700201
[4] CHANG, P.H., (1987). A closed-form solution for inverse kinematics of robot manipulators with redundancy, IEEE J. Robotics and Automation, 3, 393-403 doi:10.1109/JRA.1987.1087114
[5] EGELAND, O. (1986). On the robustness of the computed torque technique in manipulator control, Proc. 1986 IEEE Int. Conference on Robotics and Automation, San Francisco, Calif., April 7-10, 1986.
[6] EGELAND, O. (1987). Task-space tracking with redundant manipulators, IEEE J. Robotics and Automation, 3, 471-475 doi:10.1109/JRA.1987.1087118
[7] EGELAND, O. (1987). Cartesian control of a hydraulic redundant manipulator, Proc. 1987 Int. Conf. on Robotics and Automation, Raleigh, North Carolina, March 1987, pp. 2081-2086.
[8] EGELAND, O., LUNDE, E. (1988). Trajectory generation for manipulators using linear quadratic optimal tracking, Proc. 1988 IEEE Int. Conference on Robotic and Automation, Philadelphia, Pennsylvania, April 24-29, 1988, pp. 376-381.
[9] FREUND, E. (1982). Fast nonlinear control with arbitrary pole-placement for industrial robots and manipulators, Int. J. Robotics Research, 1, 65-78 doi:10.1177/027836498200100104
[10] HOLLERBACH, J.M., SUH, K.C. (1987). Redundancy resolution through torque optimization, IEEE J. Robotics and Automation, 3, 308-316 doi:10.1109/JRA.1987.1087111
[11] HSU, P., HAUSER, J., SASTRY, S. (1988). Dynamic control of redundant manipulators, Proc. 1988 IEEE Int. Conference on Robotics and Automation, Philadelphia, Pennsylvania, April 24-29, 1988, pp. 183-187.
[12] KHATIB, O. (1988). Augmented object and reduced effective inertia in robot systems, Proc. American Control Conference, Atlanta, 1988.
[13] LIEGOIS, A. (1977). Automation supervisory control of the configuration and behaviour of multibody mechanisms, IEEE Transactions on Systems, Man and Cybernetics, 7, 868-871 doi:10.1109/TSMC.1977.4309644
[14] LUH, J.Y.S., WALKER, M.W., PAUL, R.P.C. (1980). Resolved acceleration control of mechanical manipulators, IEEE Trans. Automatic Control, 25, 468-474 doi:10.1109/TAC.1980.1102367
[15] LUNDE, E., EGELAND, O., BALCHEN, J.G., (1986). Cartesian control of a class of redundant manipulators, Proc. IFAC Int. Symposium on Theory of Robots, Vienna, Austria, Dec. 6-8, 1986.
[16] SALISBURY, J.K., ABRAMOWITZ, J.D. (1985). Design and control of a redundant mechanism for small motion, Proc. 1985 IEEE Int. Conference on Robotics and Automation, St. Louis, Missouri, March 25-28, 1985, pp. 323-328.
[17] SPONG, M.W., VIDYASAGAR, M. (1987). Robust nonlinear compensator design for nonlinear robotic control, IEEE J. Robotics and Automation, 3, 345-351 doi:10.1109/JRA.1987.1087110
[18] WHITNEY, D.E. (1972). The mathematics of coordinated control of prosthetic arms and manipulators, J. Dynamics, Measurement and Control, 94, 303-309.
[19] YOSHIKAWA, T. (1985). Manipulability and redundancy control of robotic mechanisms, Proc. 1985 IEEE Int. Conference on Robotics and Automation, St. Louis, Missouri, March 25-28, pp. 1004-1009.


BibTeX:
@article{MIC-1989-2-2,
  title={{Optimal continuous-path control for manipulators with redundant degrees of freedom}},
  author={Egeland, Olav and Sagli, Jan R. and Jansen, Bård},
  journal={Modeling, Identification and Control},
  volume={10},
  number={2},
  pages={77--89},
  year={1989},
  doi={10.4173/mic.1989.2.2},
  publisher={Norwegian Society of Automatic Control}
};