“Limit cycles and Hopf bifurcations in a Kolmogorov type system”
Authors: Simona Muratori and Sergio Rinaldi,Affiliation: Politecnico di Milano (Italy)
Reference: 1989, Vol 10, No 2, pp. 91-99.
Keywords: Non-linear systems, limit cycle, Hopf bifurcation, Poincare index, stability, prey-predator models
Abstract: The paper is devoted to the study of a class of Kolmogorov type systems which can be used to represent the dynamic behaviour of prey and predators. The model is an extension of the classical prey-predator model since it allows intra-specific competition for the predator´s species. The analysis shows that the system can only have Kolmogorov´s two modes of behaviour: a globally stable equilibrium or a globally stable limit cycle. Moreover, the transition from one of these two modes to the other is a non-catastrophic Hopf bifurcation which can be specified analytically.
PDF (537 Kb) DOI: 10.4173/mic.1989.2.3
DOI forward links to this article:
[1] Simona Muratori and Sergio Rinaldi (1989), doi:10.1016/0307-904X(89)90160-1 |
[2] S. Rinaldi and S. Muratori (1992), doi:10.1016/0040-5809(92)90048-X |
[3] Simona Muratori (1991), doi:10.1016/0096-3003(91)90091-Z |
[4] Florian Rupp and Jürgen Scheurle (2015), doi:10.1002/mma.3347 |
[5] Djamila Djedid, Jaume Llibre and Amar Makhlouf (2020), doi:10.1016/j.chaos.2020.110489 |
[6] Giuseppe Orlando and Mario Sportelli (2021), doi:10.1007/978-3-030-70982-2_14 |
[7] Guido Occhipinti, Cosimo Solidoro, Roberto Grimaudo, Davide Valenti and Paolo Lazzari (2023), doi:10.1016/j.chaos.2023.113961 |
[1] ALBRECHT, F., GATZKE, H., HADDAD, A., WAX, N. (1974). The dynamics of two interacting populations, Journal of Mathematical Analysis and Applications, 46, 658-670 doi:10.1016/0022-247X(74)90267-4
[2] CHENG, K.S. (1981). Uniqueness of a limit cycle for a predator-prey system, SIAM Journal on Mathematical Analysis, 12, 541-548 doi:10.1137/0512047
[3] GILPIN, M.E. (1972). Enriched predator-prey systems: theoretical stability, Science, 177, 902-904 doi:10.1126/science.177.4052.902
[4] HSU, S.B., HUBBEL, S.P., WALTMAN, P. (1978). Competing predators, SIAM Journal on Applied Mathematics, 35, 617-625 doi:10.1137/0135051
[5] KOLMOGOROV, A.M. (1936). Sulla teoria di Volterra della lotta per l´esistenza, Giornale dell´ Istituto Italiano degli Attuari, 7, 74-80.
[6] MARSDEN, J.E., McCRACKEN, M. (1976). The Hopf Bifurcation and its Applications, Springer-Verlag, New York.
[7] MURATORI, S., RINALDI, S. (1989). A dynamical system with Hopf bifurcations and catastrophes, Applied Mathematics and Computation, 29, 1-15 doi:10.1016/0096-3003(89)90036-2
[8] SHIMAZU, Y., SUGIYAMA, K., KOJIMA, T., TOMIDA, E. (1972). Some problems in ecology oriented environmentology, Journal of Earth Science, 20, 31-89.
[9] SMITH, H.L. (1982). The interaction of steady state and Hopf bifurcations in a two-predator one-prey competition model, SIAM Journal on Applied Mathematics, 42, 27-43 doi:10.1137/0142003
BibTeX:
@article{MIC-1989-2-3,
title={{Limit cycles and Hopf bifurcations in a Kolmogorov type system}},
author={Muratori, Simona and Rinaldi, Sergio},
journal={Modeling, Identification and Control},
volume={10},
number={2},
pages={91--99},
year={1989},
doi={10.4173/mic.1989.2.3},
publisher={Norwegian Society of Automatic Control}
};