“Using Momentum Conservation to Control Kinematically Redundant Manipulators”
Authors: Jan R. Sagli and Olav Egeland,Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1991, Vol 12, No 1, pp. 13-25.
Keywords: Robotics, momentum conservation, redundant manipulators
Abstract: A control scheme for the coordination of motion in a macro-micro manipulator system is presented. The motion of the end-effector is decoupled from the rest of the system using resolved acceleration control, while a slow, gross positioning is used for the macro part. To avoid saturated inputs and excessive use of energy for systems with limited fuel, the end effector is not decoupled from macro part motion, but from selected directions of the linear momentum of the total system. For the vehicle-manipulator case, the end-effector is decoupled also from the angular momentum. This leads to lower force and torque peaks in the actuators, and control force is used on the macro part only when it is necessary to reposition this to keep the micro part inside its workspace.
PDF (1474 Kb) DOI: 10.4173/mic.1991.1.2
References:
[1] ALEXANDER, H.L. CANNON, R.H. JR. (1987). Experiments on the control of a satellite manipulator, 1987 American Control Conf., Seattle, WA, June.
[2] CHIAVERINI, S. EGELAND, O. (1990). A solution to the singularity problem in six-joint manipulators, Proc. 1990 IEEE Int. Conf. Robotics and Automation, pp. 644-649.
[3] DWYER, T.A.W., FADALI, M.S., CHEN, N. LEE, G.F.K. (1988). Manipulator manoeuvering by feedback linearization with saturating inputs, Proc. 1985 IEEE Int. Conf. Robotics and Automation, pp. 947-953.
[4] EGELAND, O. (1987). Task-space tracking with redundant manipulators, IEEE J. Robotics and Automation, 3, 471-475 doi:10.1109/JRA.1987.1087118
[5] EGELAND, O., SAGLI, J.R. JANSEN, B. (1988). Optimal continuous-path control for manipulators with redundant degrees of freedom, Proc. IFAC Symp. Robot Control, Karlsruhe, West Germany, Oct. 1988.
[6] K HATIB, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space approach, IEEE J. Robotics and Automation, 3, 43-53 doi:10.1109/JRA.1987.1087068
[7] LONGMAN, R.W., LINDBERG, R.E. ZEDD, M.F. (1987). Satellite-mounted robot manipulators - New kinematics and reaction moment compensation, Int. J. Robotics Research, 6, 87-103 doi:10.1177/027836498700600306
[8] LUH, J.Y.S., WALKER, M.W. PAUL, R.P.C. (1980). On-line computational scheme for mechanical manipulators, ASME J. Dynamic Syst., Meas., Contr., 102, 69-76.
[9] LUH, J.Y.S., WALKER, M.W. PAUL, R.P.C. (1980). Resolved acceleration control of mechanical manipulators, IEEE Trans. Automat. Contr., 25, 468-474 doi:10.1109/TAC.1980.1102367
[10] MACIEJEWSKI, A.A. KLEIN, C.A. (1985). Obstacle avoidance for kinematically redundant manipulators in varying environments, Int. J. Robotics Research, 4, 109-117 doi:10.1177/027836498500400308
[11] MACIEJEWSKI, A.A. KLEIN, C.A. (1988). Numerical filtering for the operation of robotic manipulators through kinematically singular configurations, J. Robotic Systems, 5, 527-552 doi:10.1002/rob.4620050603
[12] NAKAMURA, Y. HANAFUSA, H. (1986). Inverse kinematic solutions with singularity robustness for robot manipulator control, ASME J. Dynamic Syst., Meas., Contr., 108, 163-171.
[13] NAKAMURA, Y., HANAFUSA, H. YOSHIKAWA, T. (1987). Task-priority based redundancy control of robot manipulators, Int. J. of Robotics Research, 6, 3-15 doi:10.1177/027836498700600201
[14] NAKAMURA, Y. MUKHERJEE, R. (1989). Nonholonomic path planning of space robots, Proc. 1989 IEEE Int. Conf. Robotics and Automation, pp. 1050-1055.
[15] PAPADOPOULOS, E. DUBOWSKY, S. (1989). On the dynamic singularities in the control of free-floating space manipulators, ASME Winter Annual Meeting, Dec. 1989, pp. 45-52.
[16] SALISBURY, J.K. ABRAMOWITZ, J.D. (1988). Design and control of a redundant mechanism for small motion, Proc. 1985 IEEE Int. Conf. Robotics and Automation, pp. 323-328.
[17] SPONG, M.W., THORP, J.S. KLEINWAKS, J.M. (1986). The control of robot manipulators with bounded input, IEEE Trans. Automat. Contr., 31, 483-489 doi:10.1109/TAC.1986.1104314
[18] VAFA, Z. DUBOWSKY, S. (1987). On the dynamics of manipulators in space using the virtual manipulator approach, Proc. 1987 IEEE Int. Conf. Robotics and Automation, pp. 579-585.
[19] VAFA, Z. DUBOWSKY, S. (1987). Kinematic and dynamic models of manipulators in space: The concept of the virtual manipulator, Proc. 7th World Congress on the Theory of Machines and Mechanisms, Sevilla, Spain, Sept. 1987.
[20] WAMPLER II, C.W. (1986). Manipulator inverse kinematic solutions based on vector formulations and damped least-squares method, IEEE Trans. Syst., Man, Cybern., 16, 93-101 doi:10.1109/TSMC.1986.289285
[21] WHITNEY, D.E. (1972). The mathematics of coordinated control of prosthetic arms and manipulators, ASME J. Dynamic Syst., Meas., Contr., 94, 303-309.
BibTeX:
@article{MIC-1991-1-2,
title={{Using Momentum Conservation to Control Kinematically Redundant Manipulators}},
author={Sagli, Jan R. and Egeland, Olav},
journal={Modeling, Identification and Control},
volume={12},
number={1},
pages={13--25},
year={1991},
doi={10.4173/mic.1991.1.2},
publisher={Norwegian Society of Automatic Control}
};