“On unsteady reacting flow in a channel with a cavity”

Authors: Ivar Ø. Sand,
Affiliation: Christian Michelsen Research
Reference: 1991, Vol 12, No 4, pp. 179-205.

Keywords: Unsteady reacting flow, vortex method, simple line interface calculation, conformal mapping

Abstract: The problem investigated is the stability of a flame anchored by recirculation within a channel with a cavity, acting as a two-dimensional approximation to a gas turbine combustion chamber. This is related to experiments of Vaneveld, Hom and Oppenheim (1982). The hypothesis studied is that hydrodynamic oscillations within the cavity can lead to flashback.

PDF PDF (4370 Kb)        DOI: 10.4173/mic.1991.4.2

References:
[1] ASHURST, W.T. McMURTRY, P.A. (1989). Flame generation of vorticity: vortex dipoles from monopol, Combust. Sci. Tech., 66, 17-37 doi:10.1080/00102208908947137
[2] BEALE, J.T. MAJDA, A. (1981). Rates of convergence for viscous splitting of the Navier-Stokes equations, Math. Comput., 37, 243-259 doi:10.2307/2007424
[3] BRAY, K.N.C. (1980). Turbulent flow with premixed reactants, In Turbulent Reacting Flows (ed. P.A. Libby and F.A. Williams). Topics in Applied Physics, vol. 44 (Springer).
[4] CHEER, A.Y. (1979). A study of incompressible two-dimensional vortex flow past a circular cylinder, Lawrence Berkeley Lab. Rep., LBL-9950.
[5] CHORIN, A.J. (1973). Numerical study of slightly viscous flow, J. Fluid Mech., 57, 785-796 doi:10.1017/S0022112073002016
[6] CHORIN, A.J. (1978). Vortex sheet approximation of boundary layers, J. Comput. Phys., 27, 428-442 doi:10.1016/0021-9991(78)90019-0
[7] CHORIN, A.J. (1980). Flame advection and propagation algorithms, J. Comput. Phys., 35, 1-11 doi:10.1016/0021-9991(80)90030-3
[8] CHORIN, A.J. MARDSDEN, J.E. (1979). A Mathematical Introduction to Fluid Mechanics, Springer.
[9] CLEMENTS, R. (1973). An inviscid model of two-dimensional vortex shedding, J. Fluid Mech., 57, 321-336 doi:10.1017/S0022112073001187
[10] DAHLQUIST, C., BJØRK, Å. ANDERSON, N. (1974). Numerical Methods, Prentice-Hall.
[11] DORNY, C.N. (1975). A Vector Space Approach to Models and Optimization, Wiley-Interscience.
[12] GANJI, A.T. SAWYER, R.F. (1980). Turbulence, combustion, pollutant and stability of a premixed step combuster, NASA Contractor Rep. 3230.
[13] GHONIEM, A.F., CHORIN, A.J. OPPENHEIM, A.K. (1982). Numerical modelling of turbulent flow in a combustion tunnel, Phil. Trans. R. Soc. Lond. A, 304, 303-325 doi:10.1098/rsta.1982.0014
[14] HALD, O.H. (1979). Convergence of vortex methods for Euler´s equations II, SIAM J. Numer. Anal., 16, 726-755 doi:10.1137/0716055
[15] HALD, O.H. (1985). Convergence of vortex methods for Euler´s equations III, Rep. PAM-270. Center for Pure and Applied Mathematics.U.C. Berkeley.
[16] HENRICI, P. (1974). Applied and Computational Complex Analysis, Vol. 1.John Wiley and Sons.
[17] HO, C.M. (1986). An alternative look at the unsteady separation phenomenon, In Recent Advances in Aerodynamics (ed. A. Krothapalli) (Springer).
[18] KELLER, J.O., VANEVELD, L., KORSCHELT, D., GHONIEM, A.F., DAILY, J.W. OPPENHEIM, A.K. (1981). Mechanism of instabilities in turbulent combustion leading to flashback, AIAA 19th Aerospace Sciences Meeting, AIAA-81-0107.
[19] LAW, C.K. (1988). Dynamics of stretched flames, 22nd Symp..Intl. on Combustion, pp. 1381-1402. The Combustion Institute.
[20] LIE, S. ENGEL, F. (1880). Theorie der Transformation Gruppen, Leipzig: Teubner.
[21] MAJDA, A.J. BEALE, J.T. (1982). The design and numerical analysis of vortex methods, In Transonic, Shock and Multidimensional Flows (ed. Richard E. Meyer) (Academic).
[22] MILNE-THOMPSON, L.M. (1968). Theoretical Hydrodynamics, 5th edn..Macmillan.
[23] NOH, W.F. WOODWARD, P. (1976). SLIC (Simple Line Interface Calculation), Proc.5th Intl. Conf. on Fluid Dynamics (ed. A. Vooren and P. Zandbergen), pp. 330-339 (Springer).
[24] PITT, R.W. DAILY, J.W. (1983). Experimental study of combustion in a turbulent free shear layer formed at a rearward-facing step, AIAA J., 21, 1565-1570.
[25] PLEE, S.L. MELLOR, A.M. (1978). Review of flashback reported in prevaporizing/premixing combustors, Combust. Flame, 32, 193-203 doi:10.1016/0010-2180(78)90093-7
[26] SAND, I.Ø. (1987). On the unsteady reacting and non-reacting flow in a channel with cavity, Dr. Scient. thesis, University of Bergen, Norway.
[27] SCHLICHTING, H. (1968). Boundary-Layer Theory, 6th edn..McGraw-Hill.
[28] SETHIAN, J. (1984). Turbulent combustion in open and closed vessels, J. Comput. Phys., 54, 425-456 doi:10.1016/0021-9991(84)90126-8
[29] TREFETHEN, L.N. (1979). Numerical computation of the Schwarz-Christoffel transformation, STAN-79-710.
[30] VANEVELD, L., HOM, K. OPPENHEIM, A.K. (1982). Secondary effects in combustion instabilities leading to flashback, AIAA 20th Aerospace Sciences Meeting. AIAA-82-0037.
[31] WILLIAMS, J.C. (1977). Incompressible boundary-layer separation, Ann. Rev. Fluid Mech., 9, 113-144 doi:10.1146/annurev.fl.09.010177.000553


BibTeX:
@article{MIC-1991-4-2,
  title={{On unsteady reacting flow in a channel with a cavity}},
  author={Sand, Ivar Ø.},
  journal={Modeling, Identification and Control},
  volume={12},
  number={4},
  pages={179--205},
  year={1991},
  doi={10.4173/mic.1991.4.2},
  publisher={Norwegian Society of Automatic Control}
};