“On the Use of Constitutive Internal Variable Equations for Thermal Stress Predictions in Aluminium Casting”

Authors: Asbjørn Mo and Erik J. Holm,
Affiliation: Institute for Energy Technology (IFE)
Reference: 1993, Vol 14, No 1, pp. 43-58.

Keywords: Internal variables, constitutive equations, thermal stresses, aluminium casting

Abstract: The report discusses the use of constitutive equations with internal variables in mathematical calculations of the thermally induced strains and stresses that arise during casting of aluminium. Application of the so-called MATMOD (MATerials MODel) constitutive relations for the viscoplastic deformation of the material is first discussed in relation to the specific characteristics of the casting process. Some numerical time integrations of the one-dimensional version of the MATMOD equations that are relevant for aluminium casting are then presented. The evolution of temperature and total strain are here chosen to be close to values experienced in the direct chill (D.C.) casting process, and values for thermally induced strains and stresses are calculated. The results are compared with predictions based on the traditional approach, in which a set of representative stress-strain curves at different constant temperatures and strain rates constitute the complete description of the viscoplastic deformation.

PDF PDF (2290 Kb)        DOI: 10.4173/mic.1993.1.3

DOI forward links to this article:
[1] N. Jamaly, A.B. Phillion, S.L. Cockcroft and J.-M. Drezet (2012), doi:10.1002/9781118357002.ch34
[2] N. Chobaut, D. Carron, S. Arsène, P. Schloth and J.-M. Drezet (2015), doi:10.1016/j.jmatprotec.2015.03.029
References:
[1] BAMMANN, D. KRIEG, R.D. (1987). Unified Constitutive Equations, Chapter 7.Elsevier Applied Science, New York.
[2] BROBAK, T.J., FJÆR, H.G., JENSEN, E.K. MO, A. (1991). Mathematical Predictions of Center Crack Formation in DC Casting of Aluminium Billets, Light Metals, TMS-AIME, Warrendale, PA, USA.
[3] CLAXTON, R.J. (1973). Aluminium alloy coherence, Continuous Casting, 341-352.AIME Metallurgical Society, New York.
[4] DANTZIG, J.A. (1989). Thermal stress development in metal casting processes, Metall. Sci. Technol., 7, 133-178.
[5] FJÆR, H.G., MO, A. (1990). ALSPEN - A mathematical model for thermal stresses in DC casting of aluminium billets, Metall. Trans., 21 B, 1049-1061.
[6] GANESAN, S. POIRER, D.R. (1990). Conservation of mass and momentum for the flow of interdendritic liquid during solidification, Metall. Trans., 21 B, 173-181.
[7] HENSHALL, G.A. MILLER, K. (1989). The influence of solutes on flow stress plateaus, with emphasis on back stresses and the development of unified constitutive equations, Acta Metall., 37, 2693-2704 doi:10.1016/0001-6160(89)90303-9
[8] LOWE, T.C. (1983). New Concepts in Modelling Strain Softening, Thesis, Stanford University, Stanford, California.
[9] LOWE, T.C. MILLER, A. (1984). Improved constitutive equations for modelling strain softening - Part 1: Conceptual Development, J. Eng. Mat. Technol., XX, 337-348.
[10] MALVERN, L.E. (1969). Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Englewood Cliffs, New Jersey.
[11] MATHEW, J. BRODY, H.D. (1976). Simulation of thermal stresses in continuous casting using a finite element method, Nucl. Metall., 20, 978-990.
[12] MILLER, A.K. (1975). A Unified Phenomenological Model for the Monotonic, Cyclic, and Creep deformation of strongly Work-Hardening Materials, Thesis, Stanford University, Stanford, California.
[13] MILLER, A. (1976). An inelastic constitutive model for monotonic, cyclic, and creep deformation: Part 1 - equations development and analytical procedures, J. Eng. Mat. Technol., XX, 97-105.
[14] MILLER, A.K. (1987). Unified Constitutive Equations, Chapter 3, Elsevier Applied Science, New York.
[15] MO, A. HOLM, E.J. (1990). On the Use of Constitutive Internal Variable Equations for Mathematical Modelling of Thermal Stresses in DC Casting of Aluminium, Technical Report IFE/KR/F-90/095 and SI/890219-4, Institutt for Energiteknikk (IFE) and SINTEF SI (SI), Norway, July 1990.
[16] MONDOLFO, L.F. (1976). Aluminium Alloys, Structure and Properties, Butterworths, London.
[17] MORICEAU, J. (1975). Thermal stresses in DC casting of Al alloys, Light Metals, 2, 119-133, TMS-AIME, Warrendale, Pennsylvania.
[18] OWEN, D.R.J. HINTON, E. (1980). Finite Elements in Plasticity, Pineridge Press Limited, Swansea, UK.
[19] PERZYNA, P. (1966). Fundamental problems in viscoplasticity, Adv. App. Mech., 9, 243-377 doi:10.1016/S0065-2156(08)70009-7
[20] SAMPLE, V.M. LALLI, L.A. (1987). Effects of thermomechanical history on hardness of aluminium, Mat. Sci. Technol., 3, 28-35.
[21] SCHMIDT, C.G. MILLER, A.K. (1982). Overview 16: The effect of solutes on the strength and strain hardening behaviour of alloys, Acta Metall., 30, 615-625 doi:10.1016/0001-6160(82)90110-9
[22] SMELSER, R.E. RICHMOND, O. (1988). Constitutive model effects on stresses and deformations in a solidifying circular cylinder, Modeling and Control of Casting and Welding Processes IV, 313-328, TMS, Warrendale, Pennsylvania.
[23] THOMAS, B.G., SAMARASEKERA, I.V. atid BRIMACOMBE, J.K. (1987). Mathematical model of the thermal processing of steel ingots: Part II - Stress model, Metall. Trans., 18B, 131-147.
[24] ZIENKIEWITCZ, O.C., CORMEAU, I.C. (1974). Visco-plasticity - plasticity and creep in elastic solids - A unified numerical solution approach, Int. J. Numer. Meth. Eng., 8, 821-845 doi:10.1002/nme.1620080411


BibTeX:
@article{MIC-1993-1-3,
  title={{On the Use of Constitutive Internal Variable Equations for Thermal Stress Predictions in Aluminium Casting}},
  author={Mo, Asbjørn and Holm, Erik J.},
  journal={Modeling, Identification and Control},
  volume={14},
  number={1},
  pages={43--58},
  year={1993},
  doi={10.4173/mic.1993.1.3},
  publisher={Norwegian Society of Automatic Control}
};