“Resolving redundancy through a weighted damped least-squares solution”

Authors: Jan R. Sagli, Inge Spangelo and Olav Egeland,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1993, Vol 14, No 2, pp. 107-119.

Keywords: Robotics, redundant degrees of freedom, singularities, weighted damped least squares

Abstract: Singularity robust redundancy resolution with task priority can be implemented using the extended Jacobian technique with weighted damped least-squares. The resulting scheme is simple to implement and involves less computation than the task priority scheme. The minimum singular value of the Jacobian can be estimated reliably and accurately with little computation, and this estimate was used to calculate an appropriate damping factor. A constant damping factor was also used with good results. The scheme was successfully implemented in a simulation study with a seven-joint manipulator with a kinematic design derived from the PUMA geometry.

PDF PDF (1466 Kb)        DOI: 10.4173/mic.1993.2.5

DOI forward links to this article:
[1] Weihai Chen, Qixian Zhang, Zhen Wu, Jian Li and Luya Li (1998), doi:10.1109/ICSMC.1998.726615
References:
[1] BAILLIEUL, J., (1985). Kinematic programming alternatives for redundant manipulators, In Proc. IEEE Int. Conf. on Robotics and Automation. St. Louis, Missouri. March 1985. Pp. 722-728.
[2] BAKER, D.R., WAMPLER, C.W., (1988). On the inverse kinematics of robot manipulators with redundancy, Int. J. of Robotics Research, 7, 3-21 doi:10.1177/027836498800700201
[3] EGELAND, O., (1987). Task-space tracking with redundant manipulators, IEEE J. Robotics and Automation, 3, 471-475 doi:10.1109/JRA.1987.1087118
[4] GOLUB, G.H., VAN LOAN, C.F., (1989). Matrix Computations, Johns Hopkins, London.
[5] MACIEJEWSKI, A.A., KLEIN, C.A., (1985). Obstacles avoidance for kinematically redundant manipulators in varying environments, Int. J. of Robotics Research, 4, 99-117 doi:10.1177/027836498500400308
[6] MACIEJEWSKI, A.A., KLEIN, C.A., (1988). Numerical filtering for the operation of robotic manipulators through kinematically singular configurations, J. Robotic Systems. 5, 527-552 doi:10.1002/rob.4620050603
[7] NAKAMURA, Y., HANAFUSA, H., (1986). Inverse kinematic solutions with singularity robustness for robot manipulator control, ASME J. Dynamic Syst., Meas., Contr., 108, 163-171.
[8] NAKAMURA, Y., HANAFUSA, H., YOSHIKAWA, T., (1987). Task-priority based redundancy control of robot manipulators, Int. J. of Robotic Research, 6, 3-15 doi:10.1177/027836498700600201
[9] SERAJI H., COLBAUGH, R., (1990). Improved configuration control for redundant robots, J. of Robotic Systems, 7, 897-928 doi:10.1002/rob.4620070607
[10] WAMPLER, C.W., (1986). Manipulator inverse kinematic solutions based on vector formulations and damped least-squares method, IEEE Trans. Syst., Man and Cybern., 16, 93-101 doi:10.1109/TSMC.1986.289285
[11] WHITNEY, D.E., (1972). The mathematics of coordinated control of prosthetic arms and manipulators, J. Dynamics, Measurement and Control, 94, 303-309.
[12] YOSHIKAWA, T., (1985). Manipulability and redundancy control of robotic mechanisms, In Proc. IEEE Int. Conf. on Robotics and Automation, St. Louis, Missouri. March 1985. Pp. 1004-1009.


BibTeX:
@article{MIC-1993-2-5,
  title={{Resolving redundancy through a weighted damped least-squares solution}},
  author={Sagli, Jan R. and Spangelo, Inge and Egeland, Olav},
  journal={Modeling, Identification and Control},
  volume={14},
  number={2},
  pages={107--119},
  year={1993},
  doi={10.4173/mic.1993.2.5},
  publisher={Norwegian Society of Automatic Control}
};