“Frequency domain synthesis of trajectory learning controllers for robot manipulators”

Authors: Tom Kavli,
Affiliation: SINTEF
Reference: 1993, Vol 14, No 3, pp. 161-174.

Keywords: Trajectory learning, robot manipulators

Abstract: Trajectory learning control is a method for generating near to optimal feedforward control for systems that are controlled along a reference trajectory in repeated cycles. Iterative refinements of a stored feedforward control sequence corresponding to one cycle of the control trajectory is computed based upon the recorded trajectory error from the previous cycle. Several learning operators have been proposed in earlier work, and convergence proofs are developed for certain classes of systems, but no satisfactory method for design and analysis of learning operators under the presence of uncertainties in the system model have been presented. This article presents frequency domain methods for analysing the convergence properties and performance of the learning controller when the amplitude and phase of the system transfer function is assumed to be within specified windows. Experimental results with an industrial robot manipulator confirm the theoretical results.

PDF PDF (1828 Kb)        DOI: 10.4173/mic.1993.3.4

DOI forward links to this article:
[1] W.B.J. Hakvoort, R.G.K.M. Aarts, J. van Dijk and J.B. Jonker (2008), doi:10.1016/j.conengprac.2007.05.002
[2] W.B.J. Hakvoort, R.G.K.M. Aarts, J. van Dijk and J.B. Jonker (2007), doi:10.1109/CDC.2007.4434366
[3] W.B.J. Hakvoort, R.G.K.M. Aarts, J. van Dijk and J.B. Jonker (2006), doi:10.3182/20060906-3-IT-2910.00027
References:
[1] AN, C.H., ATKESON, C.G. HOLLERBACH, J.M. (1986). Experimental determination of the effect of feedforward control on trajectory tracking errors, Proc. 1986 IEEE International Conf on Robotics and Automation, San Francisco, CA, April 1986, pp. 55-60.
[2] AN, C.H., ATKESON, C.G. HOLLERBACH, J.M. (1988). Model Based Control of a Robot Manipulator, MIT Press, Cambridge, MA.
[3] ARIMOT0, S., KAWAMURA, S. MIYAZAKI, F. (1984). Bettering operation of robots by learning, J. of Robotic Systems, 1, 123-140 doi:10.1002/rob.4620010203
[4] ARIMOTO, S., KAWAMURA, S., MIYAZAKI, F. TAMAKI, S. (1985). Learning control theory for dynamical systems, Proc. of the 24th Conf on Decision and Control, Ft. Lauderdale, FL, December 1985, pp. 1375-1380.
[5] ATKESON, C.G. MCINTYRE, J. (1986). Robot trajectory learning through practice, Proc. 1986 IEEE International Conf. on Robotics and Automation, San Francisco, CA, pp. 1737-1742.
[6] BONDI, P., CASALINO, G. GAMBARDELLA, L. (1988). On the iterative learning control theory for robotic manipulators, IEEE J. of Robotics and Automation, 4, 14-22 doi:10.1109/56.767
[7] BIEN, Z. HUH, K.M., (1989). Higher-order iterative learning control algorithm, control theory and applications, IEEE Proc., 136, 105-112.
[8] CRAIG, J.J. (1984). Adaptive control of manipulators through repeated trials, IEEE American Control Conf., San Diego, CA, pp. 1566-1573.
[9] CRAIG, J.J. (1988). Adaptive Control of Mechanical Systems, Addison-Wesley, Reading, MA.
[10] EGELAND, O. (1986). On the robustness of the computed torque technique in manipulator control, Proc. 1986 IEEE International Conf. on Robotics and Automation, San Francisco, CA, pp. 1203-1208.
[11] HAUSER, J.E. (1987). Learning control for a class of nonlinear systems, Proc. of the 26th Conf. on Decision and Control, Los Angeles, CA, pp. 859-860.
[12] HEINZINGER, G., FENWICK, D., PADEN, B. MIYAZAKI, F. (1989). Robust learning control, Proc. of the 28th Conf on Decision and Control, Tampa, FL, pp. 435-440.
[13] HIDEG, L.M. JUDD, R.P. (1988). Frequency domain analysis of learning systems, Proc. of the 27th Conf on Decision and Control, Austin, TX, pp. 586-591.
[14] KAWAMURA, S., MIYAZAKI, F. ARIMOTO, S. (1988). Realisation of robot motion based on a learning method, IEEE Trans. on Systems, Man, and Cybernetics, 18, 126-134 doi:10.1109/21.87060
[15] KAVLI, T. (1990). Nonuniformly partitioned piecewise linear representation of continuous learned mappings, Proc. 1990 IEEE International Workshop on Intelligent Motion Control, Istanbul, Turkey, pp. 115-122.
[16] KHOSLA, P.K. (1988). Some experimental results on model-based control schemes, Proc. 1988 IEEE International Conf on Robotics and Automation, Philadelphia, PA, pp. 1380-1385.
[17] LUNDE, E. BALCHEN, J.G. (1990). Practical trajectory learning algorithm for robot manipulators, Proc. IEEE International Conf on Robotics and Automation, Cincinnati, OH.
[18] MOORE, K.L., DAHLEH, M. BHATTACHARYYA, S.P. (1989). Iterative learning for trajectory control, Proc. of the 28th Conf on Decision and Control, Tampa, FL, pp. 860-865.
[19] OH, S.-R., BIEN, Z. SUH, I.H. (1988). An iterative learning control method with application for robot manipulator, IEEE J. of Robotics and Automation, 4, 508-514 doi:10.1109/56.20435
[20] OPPENHEIM, A.V. SCHAFER, R.W. (1975). Digital Signal Processing, Prentice Hall, Englewood Cliffs, NJ.
[21] WATTON, J. (1989). Fluid Power Systems (Prentice Hall Int, (UK) Ltd).
[22] WILLIAMS, S.J. MASON, B. (1990). Impact of control system design on a flexible manufacturing system for colliery arches, IEEE Proc., 137, 157-164.


BibTeX:
@article{MIC-1993-3-4,
  title={{Frequency domain synthesis of trajectory learning controllers for robot manipulators}},
  author={Kavli, Tom},
  journal={Modeling, Identification and Control},
  volume={14},
  number={3},
  pages={161--174},
  year={1993},
  doi={10.4173/mic.1993.3.4},
  publisher={Norwegian Society of Automatic Control}
};