“ALSPEN: a mathematical model for thermal stresses in direct chill casting of aluminium billets”
Authors: Hallvard G. Fjær and Asbjørn Mo,Affiliation: Institute for Energy Technology (IFE) and SINTEF
Reference: 1993, Vol 14, No 4, pp. 193-218.
Keywords: DC casting, aluminium, stress modeling
Abstract: This paper presents the mathematical model ALSPEN, in which the thermally induced strains and stresses which develop during direct chill (DC) semicontinuous casting of aluminium billets are calculated by a finite-element method. The metal is assumed to be an isotropic elastic-viscoplastic material with strongly temperature-dependent properties. In the material description, the viscoplastic strain is treated in a ´unified´ manner, in which low-temperature (approximately) time-independent plasticity and creep at high temperatures occur as special cases. Furthermore, in the numerical time stepping procedure, all of these plastic material properties which are present simultaneously in the solution domain as a result of the large temperature differences, are treated in a similar way. To demonstrate some of the capabilities of ALSPEN, we have modeled the casting of an AlMgSi alloy, AA6063. The material properties of this alloy have been studied in parallel with the development of the mathematical model.
PDF (3491 Kb) DOI: 10.4173/mic.1993.4.2
DOI forward links to this article:
[1] Hong Xiang Li, Wen Zhen Zhu, Demian Ruvalcaba, Dag Mortensen, Dirk van der Plas, Hallvard Gustav Fjaer and Lin Zhong Zhuang (2016), doi:10.2355/isijinternational.ISIJINT-2016-242 |
[2] Dag Lindholm, Shahid Akhtar and Dag Mortensen (2020), doi:10.1007/978-3-030-36408-3_140 |
[1] AGYRIS, J.H., VAZ, L.E. WILLIAM, K.J., (1978). Improved solution methods for inelastic rate problems, Computer Methods in Applied Mechanics and Engineering. 16, 231-77 doi:10.1016/0045-7825(78)90044-0
[2] BAMMANN, D.J. (1988). In Modeling and Control of Casting and Welding Processes IV, A.F. Gland and G.J. Abbaschian, eds..TMS, Warrendale, PA, pp. 329-38.
[3] BROWN, S.B., KIM, K.H. ANAND, L. (1989). An internal variable constitutive model for hot working of metals, Int. J. Plasticity, 5, 95-130 doi:10.1016/0749-6419(89)90025-9
[4] CLAXTON, R.J. (1973). In Continuous Casting, K.R. Olen, ed..TMS-AIME, New York, NY, pp. 341-52.
[5] CROOK, A.J.L. HINTON, E. (1987). In Computational Plasticity: Models, Software and Applications, D.R.J. Owen and E. Hinton, eds.Pineridge Press Limited, Swansea, pp. 435-48.
[6] FOSSHEIM, H. MADSEN E.E. (1979). In Light Metals, W.S. Peterson, ed..TMS-AIME, Warrendale, PA, pp. 695-720.
[7] JENSEN, E.K. (1980). In Light Metals, K, J. McMinn. ed..TMS-AIME, Warrendale, PA, pp. 631-42.
[8] JENSEN, E.K. SCHNEIDER, W. (1990). In Light Metals, Christian M. Bickert, ed..TMS-AIME, Warrendale, PA , pp. 937-43.
[9] JENSEN, E.K. (1989). Private communication, Elkem Aluminum, Farsund, Norway.
[10] KELLY, J.E., MICHALEK, K.P., O´CONNOR, T.G., THOMAS, B.G. DANTZIG, J.A. (1988). Metall Trans A, 19A, 2589-2602.
[11] KRISTIANSSON, J.O. (1982). Thermal Stresses in the early Stage of Solidification of Steel, J. Therm. Stresses, 5, 315-30 doi:10.1080/01495738208942153
[12] KRISTIANSSON, J.O. ZETTERLUND, E.H. (1982). In Numerical Methods in Industrial Forming Processes, Pineridge Press limited, Swansea, pp. 413-423.
[13] LIU, W.K. BELYTSCHKO, T., ONG, J.S.J. LAW, E.S. (1985). Use of stabilization matrices in non-linear analysis, Eng. Comput., 2,47-55 doi:10.1108/eb023600
[14] LIU, W.K. ONG, J.S.J. URAS, R.A. (1985). Comput, Methods Appl. Mech. Eng., 53,13-46 doi:10.1016/0045-7825(85)90074-X
[15] LUSH, A.M., WEBER, G. ANAND, L. (1989). Finite element stabilization matrices-a unification approach, Int. J. Plasticity, 5,521-49 doi:10.1016/0749-6419(89)90012-0
[16] MADSEN, E.E., (1979). In Numerical Methods in Thermal Problems, R.W. Lewis and K. Morgan, eds..Pineridge Press Limited, Swansea, pp. 81-89.
[17] MADSEN, E.E. FLADMARK, G.E. (1973). In Numerical Solution of Partial Differential Equations, G.E. Fladmark and J.G. Gram, eds..D. Reidel Publishing Company, Dordrecht, pp. 223-40.
[18] MAHIN, K.W., MACEWEN, S., WINTER, W., MASON, W., KANOUFF, M. FUCHS, E.A. (1988). In Modeling and Control of Casting and Welding Processes IV, TMS, WARRENDALE, PA, pp. 339-50.
[19] MATHEW, J. BRODY, H.D. (1976). Nucl Metall, 20, pp. 978-90.1979, Proc. Int. Conf on Solidification, A. Nicholson, ed..TMS, Warrendale, PA, Book 192, pp. 244-49.
[20] MILLER, A.K. ed. (1987). Unified Constitutive Equations, Elsevier Applied Science, London.
[21] MONDOLFO, L.F. (1976). Aluminum Alloys, Structure and Properties, Butterworth´s, London, pp. 61 and 81-82.
[22] MORICEAU, J. (1975). In Light Metals, R. Rentsch, ed..TMS-AIME, WARRENDALE, PA, vol. 2, pp. 119-33.
[23] NEDREBERG, M.L. (1990). PhD Thesis, University of Oslo, Oslo, Norway.
[24] OWEN, D.R.J. HINTON, E. (1980). Finite Elements in Plasticity, 1st ed..Pineridge Press Limited, Swansea.
[25] PERZYNA, P. (1966). Fundamental Problems in Viscoplasticity, Adv. Appl. Mech., 9, 243-377 doi:10.1016/S0065-2156(08)70009-7
[26] PIERCE, D. SHIH, C.F. NEEDLEMAN, A. (1984). A tangent modulus method for rate dependent solids, Comput. Struct., 8, 875-87 doi:10.1016/0045-7949(84)90033-6
[27] RAMMERSTORFER, F.G., JAQUEMAR, CH., FISHER, D.F. H. WIESEINGER (1979). In Numerical Methods in Thermal Problems, R. W. Lewis and K. Morgan, eds..Pineridge Press Limited, Swansea, pp. 712-22.
[28] RICHMOND, O. (1981). In Modeling of Casting and Welding Processes, H.D. Brody and D. Apelian, eds..TMS, Warrendale, PA, pp. 215-22.
[29] ROTH, A., WELSCH, M. RÖHRIG, H. (1942). Aluminum, June/July, 206-09.
[30] SAMPLE, V.M. LALLI, L.A. (1987). Mater Sci Technol, 3, 28-35.
[31] SMELSER, R.E., RICHMOND, O. (1988). In Modeling and Control of Casting and Welding Processes IV, A.F. Giamei and G.J.Abbaschian, eds..TMS, Warrendale, PA, pp. 313-28.
[32] SNYDER, M.D. BATHE, K.J. (1981). A solution procedure for thermo-elastic-plastic and creep problems, Nucl. Eng. Des., 64, 49-80 doi:10.1016/0029-5493(81)90032-7
[33] TANAKA, T.G. MILLER, K. (1988). Development of a method for integrating time-dependent constitutive equations with large, small or negative strain rate sensitivity, Int. J. Numer. Methods Eng., 26, 2457-85 doi:10.1002/nme.1620261107
[34] THOMAS, B.G., SAMARASEKAERA I.V., BRIMACOMBE, J.K., (1987). Mathematical model of the thermal processing of steel ingots: Part II - Stress model, Metall. Trans. B, 18B, 131-47 doi:10.1007/BF02658438
[35] VORREN, O. BRUSETHAUG, S. (1987). In 8th Internationale Leicht Metall, Tagung, Leoben and Vienna, Austria.Aluminium Verlag, Düsseldorf, Federal Republic of Germany, pp. 278-83.
[36] WECKMAN, D.C. NIESSEN, P. (1984). Can Metall Q, 23, 209-16.
[37] WILLIAMS, J.R., LEWIS, R.W. MORGAN, K. (1979). An elasto-viscoplastic thermal stress model with applications to the continuous casting of metals, Int. J. Numerical Method Eng., 14, 1-9 doi:10.1002/nme.1620140102
[38] ZIENKIEWITCZ, O.C. CORMEAU, I.C. (1974). Visco-plasticity-plasticity and creep in elastic solids-a unified numerical solution approach, Int. J. Numer. Methods Eng., 8, 821-45 doi:10.1002/nme.1620080411
BibTeX:
@article{MIC-1993-4-2,
title={{ALSPEN: a mathematical model for thermal stresses in direct chill casting of aluminium billets}},
author={Fjær, Hallvard G. and Mo, Asbjørn},
journal={Modeling, Identification and Control},
volume={14},
number={4},
pages={193--218},
year={1993},
doi={10.4173/mic.1993.4.2},
publisher={Norwegian Society of Automatic Control}
};