“The Past and the Next Fifteen Years”
Authors: Manfred Morari,Affiliation: California Institute of Technology
Reference: 1994, Vol 15, No 3, pp. 161-164.
Keywords: Model predictive control, optimal control, control applications
Abstract: The scope of MIC defined by the title Modeling, Identification and Control is broad and it is impossible to do justice to all these areas in a discussion which is limited to a few pages. Therefore, in the following paragraphs I will concentrate on control and leave the treatment of the other topics to the other contributors.
PDF (680 Kb) DOI: 10.4173/mic.1994.3.5
DOI forward links to this article:
[1] Mukul Agarwal (1996), doi:10.1016/0959-1524(96)00004-2 |
[1] ARKUN, Y. RAY, W. (1991). Proc Fourth International Conference on Chemical Process Control - CPCIV, South Padre Island, Texas.CACHE-AIChE.
[2] BADMUS, O., EVEKER, K. NETT, C. (1992). Control-oriented high frequency turbomachinery modeling, 28th Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics, Nashville, TN.
[3] BODE, H. (1945). Network Analysis and Feedback Amplifier Design, Van Nostrand, Princeton.
[4] BROCKETT, R.W. (1983). Asymptotic stability and feedback stabilization, In R.W. Brockett, R.S. Millman and H.J. Sussman (eds), Differential Geometric Control Theory (Birkhäuser), pp. 181-191.
[5] CLARKE, D.W. (1994). Proc Workshop on Advances in Model-Based Predictive Control, Oxford University Press, Oxford.
[6] DOWNS, J.J. DOSS, J.E. (1991). Present status and future needs: The view from North American industry, In Y. Arkun and W. Ray (eds), Proc. Fourth International Conference on Chemical Process Control - CPCI V. South Padre Island, Texas, (CACHE-AIChE), pp. 53-77.
[7] DOYLE, J.C. (1982). Analysis of feedback systems with structured uncertainties, IEE Proceedings, D, 129, 242-250.
[8] DOYLE, J.C. STEIN, C. (1981). Multivariable feedback design: Concepts for a classical/modern synthesis, IEEE Trans. Aut. Contr., 26, 4-16 doi:10.1109/TAC.1981.1102555
[9] ISIDORI A. (1989). Nonlinear Control Systems, Springer-Verlag: New York.
[10] KALMAN, R. (1960). Contributions to the theory of optimal control, Bol. Soc. Mat. Mexicana, 5, 102-119.
[11] KALMAN, R. BUCY, R. (1961). New results in linear filtering and prediction theory, J. Basic Eng., Trans, ASME D, 83, 95-108.
[12] KOTHARE, M., CAMPO, P., MORARI, M. NETT, C. (1994). A unified framework for the study of anti-windup designs, Automatica, in press doi:10.1016/0005-1098(94)90048-5
[13] MAYNE, D. MICHAKSKA, H. (1990). Receding horizon control of nonlinear systems, IEEE Trans. Aut. Contr. 35. 814-824 doi:10.1109/9.57020
[14] MORARI, M. ZAFIRIOU, E. (1989). Robust Process Control, Prentice-Hall, Inc., Englewood Cliffs.
[15] NYQUIST, H. (1932). Regeneration theory, Bell Syst. Tech. J., 11, 126-147.
[16] OLIVEIRA, S. MORARI, M. (1994). Robust model predictive control for nonlinear systems, Proc. IEEE Conf. on Decision and Control, Orlando, Florida, submitted.
[17] PERKINS, J.D. (1992). IFAC Workshop on Interactions between Process Design and Process Control, Pergamon Press, London.
[18] POMET, J. (1992). Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift, Syst. Contr. Lett, 18, 1512-1516 doi:10.1016/0167-6911(92)90019-O
[19] RAWLINGS, J. MUSKE., K.R. (1993). The stability of constrained receding horizon control, IEEE Trans Aut. Contr., 38, 1512-1516.
[20] TEEL, A., MURRAY, R. WALSH, G. (1992). Nonholonomic control systems: From steering to stabilization with sinusoids, Proc. IEEE Conf. on Decision and Control, pp. 1603-1609.
[21] WALGAMA, K.S., RÖNNBÄCK, S. STERNBY, J. (1992). Generalization of conditioning technique for anti-windup compensators, IEEE Proc. D, 139, 109-118.
[22] YASUNOBU, S. (1993). Fuzzy control methods and their real system applications, IMA Minisymposium on Fuzzy Control, The Institute for Mathematics and its Applications, Minneapolis, MN, unpublished.
[23] ZAFIRIOU, E. (ed.) (1994). IFAC Workshop on Integration of Process Design and Process Control, Baltimore: Pergamon, in press.
[24] ZAMES, G. (1981). Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses, IEEE Transactions on Automatic Control, 26, 301-320 doi:10.1109/TAC.1981.1102603
[25] ZHENG, A. MORARI, M. (1993). Robust stability of constrained model predictive control, Proc. American Control Conf., San Francisco, California, pp. 379-383.
BibTeX:
@article{MIC-1994-3-5,
title={{The Past and the Next Fifteen Years}},
author={Morari, Manfred},
journal={Modeling, Identification and Control},
volume={15},
number={3},
pages={161--164},
year={1994},
doi={10.4173/mic.1994.3.5},
publisher={Norwegian Society of Automatic Control}
};