“Generalized predictive control of nonlinear systems of the Hammerstein form”

Authors: Wei Wang and Rolf Henriksen,
Affiliation: Northeast University of Technology (Shenyang) and NTNU, Department of Engineering Cybernetics
Reference: 1994, Vol 15, No 4, pp. 253-262.

Keywords: Nonlinear systems, Hammerstein models, predictive control, adaptive control, stability analysis

Abstract: A nonlinear generalized predictive control algorithm based upon a Hammerstein model is presented. Stability of the closed-loop system is analyzed with a control horizon equal to one. An adaptive nonlinear generalized predictive control algorithm with a linear estimator is then proposed. Finally, some results from simulation experiments are presented in order to show the algorithm´s ability.

PDF PDF (993 Kb)        DOI: 10.4173/mic.1994.4.4

DOI forward links to this article:
[1] Bao-Cang Ding, Yu-Geng Xi and Shao-Yuan Li (2008), doi:10.1111/j.1934-6093.2004.tb00214.x
[2] Laurent Vanbeylen, Rik Pintelon and Johan Schoukens (2008), doi:10.1016/j.automatica.2008.05.013
[3] Ann Kretzschmar, Wlodek Tych and Nick A. Chappell (2014), doi:10.1016/j.envsoft.2014.06.017
[4] (2014), doi:10.1201/b17078-9
[5] H.-F. Chen (2004), doi:10.1109/TAC.2004.835358
[6] Han-Fu Chen (2007), doi:10.1109/TAC.2007.894536
[7] L. Vanbeylen, R. Pintelon and J. Schoukens (2008), doi:10.3182/20080706-5-KR-1001.00456
[8] Laurent Vanbeylen and Rik Pintelon (2010), doi:10.1007/978-1-84996-513-2_17
[9] (2019), doi:10.1002/9781119119593.ch1
References:
[1] CLARKE, D.W. (1988). Application of generalized predictive control, Proc. IFAC Symp. on Adaptive Control Qf Chemical Processes, Copenhagen, Denmark.
[2] CLARKE, D.W., MOHTADI C. TUFFS P.S. (1987). Generalized predictive control- Part I and II, Automatica, 23, 137-160 doi:10.1016/0005-1098(87)90087-2
[3] CLARKE, D.W. MOHTADI, C. (1989). Properties of generalized predictive control, Automatica, 25, 859-875 doi:10.1016/0005-1098(89)90053-8
[4] DEKEYSER, R.M.C. VAN CAUWENBERGHE, A.R. (1985). Extended prediction self-adaptive control, Proc. 7th IFAC/IFORS Symp. on Identification and System Parameter Estimation, York, UK. 1255-1260.
[5] DEKEYSER, R.M., VAN DE VELDE, PH. G.A. DUMORTIER F.A.G. (1988). A comparative study of self-adaptive long-range predictive control methods, Automatica, 24, 149-163 doi:10.1016/0005-1098(88)90024-6
[6] GOODWIN, G.C., SIN, K.S. SALUJA, K.K. (1980). Stochastic adaptive control and prediction: the general delay-coloured noise case, IEEE Trans. Automatic Control, 25, 946-950 doi:10.1109/TAC.1980.1102459
[7] GOODWIN, G.C., RAMADGE, P.J. CAINES, P.E. (1981). Discrete time stochastic adaptive control, SIAM J. Control and Optimization, 19, 829-853 doi:10.1137/0319052
[8] KRÄMER, K. UNBEHAUEN, H. (1988). Survey to adaptive long-range predictive control, Proc. 12th IMACS World Congress on Scientific Computation, Paris, France, 358-363.
[9] LELIC, M.A. ZARROP, M.B. (1987). Generalized pole-placement self-tuning controller Part 1 and 2, Int. J. Control, 46, 547-601 doi:10.1080/00207178708933916
[10] WANG, W. HENRIKSEN, R. (1992). Direct adaptive generalized predictive control, Proc.1992 American Control Conference, Chicago, Illinois, 2402-2406.
[11] WANG, W. HENRIKSEN, R. (1992). A direct adaptive generalized predictive controller and some of its global convergence properties, Proc. 4th IFAC Int. Symp. Adaptive Systems in Control and signal Processing, Grenoble, France, 187-192.
[12] YDSTIE, B.F. (1985). Extended horizon adaptive control, Proc. 9th IFAC World Congress, Budapest, Hungary. Vol. VII, 133-137.
[13] ZHU, Q.M., WARWICK, K. DOUCE, J.L. (1991). Adaptive general predictive controller for nonlinear systems, IEE Proc.-D, 138, 33-40.


BibTeX:
@article{MIC-1994-4-4,
  title={{Generalized predictive control of nonlinear systems of the Hammerstein form}},
  author={Wang, Wei and Henriksen, Rolf},
  journal={Modeling, Identification and Control},
  volume={15},
  number={4},
  pages={253--262},
  year={1994},
  doi={10.4173/mic.1994.4.4},
  publisher={Norwegian Society of Automatic Control}
};