“Applications of computational fluid dynamics in optimisation and design of metallurgical processes”

Authors: Stein T. Johansen,
Affiliation: SINTEF
Reference: 1997, Vol 18, No 2, pp. 101-122.

Keywords: Computational fluid dynamics, process technology, turbulence, granular flows, metallurgy

Abstract: During the last two decades computational fluid dynamics (CFD) has become a powerful tool for analysing and designing metallurgical processes. In this paper we give examples on how these techniques can be applied to a large variety of processes and also how CFD can be used to predict heat and mass transfer from fundamental principles. The paper is restricted to the applications of CFD at SINTEF Materials Technology. The examples given in the paper will range from treatment of raw materials, environmental issues, furnace processes and combustion, magnetohydrodynamics, melt treatment to casting.

PDF PDF (4130 Kb)        DOI: 10.4173/mic.1997.2.2

DOI forward links to this article:
[1] Qianpu Wang, Morten Chr. Melaaen and Sunil R. De Silva (2001), doi:10.1016/S0032-5910(01)00282-0
[2] Yanyan Li, Xinxi Zhang, Xiaozhong Shen, Haisheng Li and Ke Gao (2015), doi:10.1016/j.minpro.2015.06.007
[3] Yi Yuan, Tiansheng Wang, Zhicheng Shan, Lixue Yang, Hanwen Xie, Bin Cao, Ao Gao and Qiang Wang (2024), doi:10.1002/adts.202400547
References:
[1] AARFLOT, A.O., JOHANSEN, S.T. VENÅS, K. (1992). New in-line technology combining degassing and an efficient removal of non-metallic inclusions by gas fluxing, Proceedings of the 5th International Aluminium Extrusion Seminar, Vol. I, 155-160, May 19-22, Chicago.
[2] ANDRESEN, B. (1995). Process model for carbothermic production of silicon metal, Ph.D.-thesis.The Norwegian Institute of Technology, Trondheim.
[3] BAKKE, P. (1992). Measurement and removal of inclusions and hydrogen in magnesium, Ph.D.-thesis.The Norwegian Institute of Technology, Trondheim.
[4] BOYSAN, F. JOHANSEN, S.T. (1985). Mathematical modelling of gas-stirred reactors, International Seminar on Refining and Alloying of Liquid Aluminium and Ferro-Alloys, Trondheim, Norway, 267-288.Aluminium-Verlag GmbH, Dusseldorf.
[5] BRACKBILL, J.U., KOTHE, D.B. ZEMACH, C. (1992). A continuum method for modelling surface tension, J. Comput. Phys., 100, 335-354 doi:10.1016/0021-9991(92)90240-Y
[6] CROWE, C.T., SHARMA, M.P. STOCK, D.E. (1977). The particle source in Cell, PSI-Cell model for gas-droplet flows. J. Fluids Engr., 99, 235.
[7] DONG, L., JOHANSEN, S.T. ENGH, T.A. (1992). Mass transfer at gas-liquid interfaces in stirred vessels, Canadian Metallurgical Quarterly, 31, 299-307.
[8] DONG, L., JOHANSEN, S.T. ENGH, T.A. (1994). Flow induced by an impeller in an unbaffled tank-II, Numerical modelling, Chem. Eng. Sci., 49, 549-560 doi:10.1016/0009-2509(94)80055-3
[9] ENSTAD, G. (1992). Private communication, POSTEC RESEARCH.
[10] FREDRIKSEN, A. (1995). Strømningsberegninger av varme- og masseovergang til bobler, SINTEF Report SF24 F95586.
[11] GAMMELSÆTER, R., JOHANSEN, S.T. BERGSTRØM, T. (1991). Modelling turbulent combustion with finite chemical kinetics, applied to furnace off gas combustion, Proceedings of the EDP Congress 1992. The TMS Annual Meeting, San Diego, CA. The Minerals, Metals and& Materials Society. 821-832.
[12] GAMMELSÆTER, R. (1996). Private communication, SINTEF, Trondheim.
[13] GOSMAN, A.D. LAUNDER, B.E. (1976). TEACH-2E, Internal report, Mech. Eng. Dept., Imperial College, London.
[14] GU, L. (1993). Transport phenomena in silicon vapour infiltrated Argon arcs and anodic metal pools, Ph.D.-thesis.The Norwegian Institute of Technology, Trondheim.
[15] HIRT, C.W. NICHOLS, B.D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201 doi:10.1016/0021-9991(81)90145-5
[16] HOLT, N.J. (1994). A metallurgical reactor with three plasma torches: Numerical simulation and experimental results, Ph.D.-thesis.The Norwegian Institute of Technology, Trondheim.
[17] HOP, B.I., JOHANSEN, S.T. RASCH, B. (1996). A 3D numerical model for removal of inclusions to gas bubbles, To appear in Light Metals.Anaheim.
[18] JOHANSEN. S.T. (1990). On the modelling of turbulent two-phase flows, Dr. Techn.-thesis.The Norwegian Institute of Technology, Trondheim.
[19] JOHANSEN, S.T. (1991). Thermal-inertial deposition of particles, Proceedings of the International Conference on Multiphase Flows, 91-Tsukuba, Sept. 24-27, Japan, 415-421.
[20] JOHANSEN, S.T. (1991). The deposition of particles on vertical walls, Int. J. Multiphase Flow, 17, 355-376 doi:10.1016/0301-9322(91)90005-N
[21] JOHANSEN, S.T. (1992). A model for heat transpon with phase transition where enthalpy is solved for directly, Unpublished research.
[22] JOHANSEN, S.T. (1993). Sluttrapport: Groing av gasskanaler, SINTEF Report STF34 F93234.
[23] JOHANSEN, S.T. (1994). A VOF ´Volume of Fluid´ technique for 3D free surface flows, Presented at Fluid Mechanics in Heterogeneous Systems. Book of abstracts from the 7th Israeli-Norwegian Technical and Scientific Symposium, 50-52, The Norwegian Institute of Technology, June 20-22.
[24] JOHANSEN, S.T. (1994). A general procedure for calculating 3D direct current MHD flows, Proceedings of the International Symposium on Electromagnetic Processing of Materials, Nagoya, ISIJ, 103-108.
[25] JOHANSEN, S.T., ANDERSON, N.M. DE SILVA, S.R. (1990). A two-phase model for particle local equilibrium applied to air classification of powders, Powder Technology, 63, 121-132 doi:10.1016/0032-5910(90)80034-V
[26] JOHANSEN, S.T., BOYSAN, F. AYERS, W.H. (1987). Mathematical modelling of bubble driven flows in metallurgical processes, Applied Scientific Research, 44, 197-207 doi:10.1007/BF00412013
[27] JOHANSEN, S.T., BOYSAN, F. ENGH, T.A. (1986). Numerical calculations of removal of inclusions and dissolution of refractory in bubble stirred ladles, Proceedings of the Fourth Japan-Nordic Countries Joint Symposium on Science and Technology of Process Metallurgy, Nov. 17-18, Tokyo, 182-215.The Iron and Steel Institute, Japan.
[28] JOHANSEN, S.T., FREDRIKSEN, A. RASCH, B. (1995). Particle flotation to bubbles in rotor-stirred reactors for melt treatment, Light Metals,.Ed. J. EVANS, TMS, 1203-1206.
[29] JOHANSEN, S.T., GRAADAHL, S., GAMMELSÆTER, R., RAANES, M., ARNTSBERG, A.E., LINSTAD, T., ENSTAD, G. TVEIT, H. (1991). Clogging of ferro-silicon furnace off-gas channels at high temperatures, (Smelter Process Gas Handling and Treatment) (Eds) T.J.A. SMITH and C.J. NEWMAN. The Minerals, Metals and& Materials Society, 7-18.
[30] JOHANSEN, S.T. ANDERSEN, N.M. (1986). A model for predicting effects of thermophoresis on collection efficiencies in swirling flow precipitators, (Gas Cleaning at High Temperatures), 73-88 (Pergamon Press).
[31] JOHANSEN, S.T. ANDERSON, N.M. (1990). A mathematical model for large scale filtration, EDP Congress ´90,.Ed. D.R. GASKELL. The Minerals, Metals and& Materials Society, 441-451.
[32] JOHANSEN, S.T. BOYSAN, F. (1988). Fluid dynamics in bubble stirred ladles, PART II: Mathematical modelling, Met. Trans, B, 19, 755-764.
[33] JOHANSEN, S.T. GU, L. (1994). A Reynolds stress turbulence model for fluid flow and enthalpy dispersion under influence of strong external magnetic fields, Proceedings of the International Symposium on Electromagnetic Processing of Materials, Nagoya, ISIJ, 49-54.
[34] JOHANSEN, S.T. LAUX, H. (1995). An alternative method for numerical solution of dispersed multiphase flow equations, Proceedings of The 2nd International Conference on Multiphase Flow 95-Kyoto, Vol, 2, NU-1, NU-8, April 3-7.
[35] JOHANSEN, S.T. DE SILVA, S.R. (1989). The use of computer models for the design of air classifiers, Proceedings of the Powder and Bulk Solids Conference, Chicago.
[36] JOHANSEN, S.T. DE SILVA, S.R. (1994). Some considerations regarding optimum flow fields for centrifugal air classification, 789-801. Preprints of the 8th European Symposium on Comminution, May 17-19, Stockholm.
[37] JOHANSEN, S.T., DE SILVA, S.R. VESANTO, A. (1990). Multiphase turbulence modelling as a tool in the optimisation of classification equipment, Proceedings of the Second World Congress Particle Technology, Vol. III, 135-142, Sept. 19-22, Kyoto, Japan.
[38] LARSEN, H.L., HILDAL, A., SEVASTYANENKO, V.G. BAKKEN, J.A. (1995). Numerical modelling of AC electric arcs, Proceedings of the 12th International Symposium on Plasma Chemistry, Aug. 21-25 1995, University of Minnesota. 2339-2344..Eds J.V. HEGERLEIN, D.W. ERNIE and J.T. ROBERTS.
[39] LAUNDER, B. SPALDING, D.B. (1972). Mathematical models of turbulence, Academic Press, London.
[40] LAUX, H. (1997). PhD-thesis, To be completed during 1997.NTNU, Trondheim.
[41] PATANKAR, S.V. (1980). Numerical heat transfer and fluid flow, Hemisphere Books.
[42] SOLHEIM, A., JOHANSEN, S.T., ROLSETH S. THONSTAD, J. (1989). Gas induced bath circulation in aluminium reduction cells, Journal of Applied Electrochemistry, 19, 703-712 doi:10.1007/BF01320645
[43] VENÅS, K. JOHANSEN, S.T. (1986). A new centrifuge for cleaning dusty gases at temperatures below 500 degrees C, (Gas Cleaning at High Temperatures), 133-148 (Pergamon Press).


BibTeX:
@article{MIC-1997-2-2,
  title={{Applications of computational fluid dynamics in optimisation and design of metallurgical processes}},
  author={Johansen, Stein T.},
  journal={Modeling, Identification and Control},
  volume={18},
  number={2},
  pages={101--122},
  year={1997},
  doi={10.4173/mic.1997.2.2},
  publisher={Norwegian Society of Automatic Control}
};