“Nonlinear oscillations in coriolis based gyroscopes”
Authors: Dag Kristiansen and Olav Egeland,Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1999, Vol 20, No 1, pp. 27-62.
Keywords: Cylinder gyroscopes, nonlinear vibrations, energy transfer
Abstract: In this paper we model and analyze nonlinear oscillations which are known to exist in some Coriolis based gyroscopes due to large amplitude excitation in the drive loop. A detailed derivation of a dynamic model for a cylinder gyroscope which includes geometric nonlinearities is given, and energy transfer between the system´s modes are analyzed using perturbation theory and by proposing a simplified model. The model is also simulated, and the results are shown to give an accurate description of the experimental results. This work is done in order to gain a better understanding of the gyroscope´s dynamics, and is intended to be a starting point for designing nonlinear observers and vibration controllers for the gyroscope in order to increase the performance.
PDF (3208 Kb) DOI: 10.4173/mic.1999.1.2
References:
[1] ABE, H., YOSHIDA, T., KOBAYASHI, H. NAKAMURA, K. (1996). Temperature Dependence of Zero Offset of Piezoelectric-Ceramic Cylinder Vibratory Gyroscope, Japanese Journal of Applied Physics, 35, pp. 5031-5033 doi:10.1143/JJAP.35.5031
[2] ABE, H., YOSHIDA, T. NAKAMURA, K. (1996). Vibration Mode Analysis of Piezoelectric-Ceramic Cylinder Vibratory Gyroscopes with Interdigital Electrodes, Electronics and Communications in Japan, 79, pp. 53-60.
[3] ABE, H., YOSHIDA, T. TURUGA, K. (1992). Piezoelectric-Ceramic Cylinder Vibratory Gyroscope, Japanese Journal of Applied Physics, 31, pp. 3061-3063 doi:10.1143/JJAP.31.3061
[4] ANDERS, J. PEARSON, R. (1994). Applications of the ´START´ Vibratory Gyroscope, GEC Review, 9, pp. 168-175.
[5] BLEVINS, R. (1979). Formulas for Natural Frequency and Mode Shapes, Van Nostrand Reinhold, New York.
[6] BURDESS, J. (1986). The dynamics of a thin piezoelectric cylinder gyroscope, Proceedings of Institute of Mechanical Engineers, 200, pp. 271-280 doi:10.1243/PIME_PROC_1986_200_128_02
[7] CHEN, J. BABCOCK, C. (1975). Nonlinear Vibration of Cylindrical Shells, AIAA Journal, 13, pp. 868-876 doi:10.2514/3.60462
[8] CHU, H. (1961). Influence of Large Amplitudes on Flexural Vibrations of a Thin Circular Cylindrical Shell, Journal of Aerospace Sciences, 28, pp. 602-609.
[9] EVAN-IWANOWSKI, R. (1976). Resonance Oscillations in Mechanical Systems, Elsevier, New York.
[10] FOX, C. (1984). Vibratory gyroscopic sensors, In DGON Symposium on Gyro Technology, Stuttgart, Germany.
[11] FOX, C. (1988). Vibrating Cylinder Rate Gyro, Theory of Operation and Error Analysis, In DGON Symposium on Gyro Technology, Stuttgart, Germany.
[12] HAGOOD, N. CHUNG, W. VON FLOWTOW, A. (1990). Modelling of Piezoelectric Actuator Dynamics for Active Structural Control, Journal of Intelligent Material, Systems and Structures, 1, pp. 327-354 doi:10.1177/1045389X9000100305
[13] KAGAWA, Y., TSUCHIYA, T. KAWASHIMA, T. (1996). Finite Element Simulation of Piezoelectric Vibrator Gyroscopes, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 43, pp. 509-518.
[14] KANANI, B. BURDESS, J. (1990). The piezoelectric cylinder gyroscope, In Proceedings of the Institution of Mechanical Engineers, Cambridge, UK, pp. 61-66.
[15] LANGDON, R. (1982). The vibrating cylinder gyro, The Marconi Review, 46, pp. 231-249.
[16] LANGMAID, C. (1996). Vibrating structure gyroscopes, Sensor Review, 16, pp. 14-17 doi:10.1108/02602289610108357
[17] LEISSA, A. (1973). Vibration of Shells, National Aeronautics and Space Administration, Washington.
[18] LOVEDAY, P. (1996). A Coupled Electromechanical Model of an Imperfect Piezoelectric Vibrating Cylinder, Journal of Intelligent Material, Systems, and Structures, 7, pp. 44-53.
[19] NAYFEH, A. H. MOOK, D. T. (1979). Nonlinear Oscillations, Wiley-Interscience, New York.
[20] NAYFEH, A. H. RAOUF, R. (1987). Nonlinear Oscillations of Circular Cylindrical Shells, International Journal of Solids and Structures, 23, pp. 1625-1638 doi:10.1016/0020-7683(87)90113-2
[21] NAYFEH, A. H. RAOUF, R. (1987). Nonlinear Forced Response of Infinitely Long Circular Cylindrical Shells, Journal of Applied Mechanics, 54, pp. 571-577.
[22] NAYFEH, A.H., RAOUF, R. NAYFEH, J. (1991). Nonlinear Response of Infinitely Long Circular Cylindrical Shells to Subharmonic Radial Loads, Journal of Applied Mechanics, 58, pp. 1033-1041 doi:10.1115/1.2897679
[23] SHATALOV, M., DU PRE LE ROUX, J. KOCH, F. (1996). Estimation of vibratory gyroscope parameters with data derived for the vibrating element, In DGON Symposium on Gyro Technology, Stuttgart, Germany.
[24] SHUTA, K. ABE, H. (1995). Compact Vibratory Gyroscope, Japanese Journal of Applied Physics, 34, pp. 2601-2603 doi:10.1143/JJAP.34.2601
[25] SOEDEL, W. (1993). Vibrations of Shells and Plates, Marcel Dekker, New York.
[26] YASUDA, K. KUSHIDA, G. (1984). Nonlinear Forced Oscillations of a Shallow Spherical Shell, Bulletin of the Japanese Society of Mechanical Engineering, 27, pp. 2233-2240.
BibTeX:
@article{MIC-1999-1-2,
title={{Nonlinear oscillations in coriolis based gyroscopes}},
author={Kristiansen, Dag and Egeland, Olav},
journal={Modeling, Identification and Control},
volume={20},
number={1},
pages={27--62},
year={1999},
doi={10.4173/mic.1999.1.2},
publisher={Norwegian Society of Automatic Control}
};