“Subspace System Identification of the Kalman Filter”
Authors: David Di Ruscio,Affiliation: Telemark University College
Reference: 2003, Vol 24, No 3, pp. 125-157.
Keywords: Identification methods, Subspace methods Stochastic systems, Sampled data systems, Linear systems
Abstract: Some proofs concerning a subspace identification algorithm are presented. It is proved that the Kalman filter gain and the noise innovations process can be identified directly from known input and output data without explicitly solving the Riccati equation. Furthermore, it is in general and for colored inputs, proved that the subspace identification of the states only is possible if the deterministic part of the system is known or identified beforehand. However, if the inputs are white, then, it is proved that the states can be identified directly. Some alternative projection matrices which can be used to compute the extended observability matrix directly from the data are presented. Furthermore, an efficient method for computing the deterministic part of the system is presented. The closed loop subspace identification problem is also addressed and it is shown that this problem is solved and unbiased estimates are obtained by simply including a filter in the feedback. Furthermore, an algorithm for consistent closed loop subspace estimation is presented. This algorithm is using the controller parameters in order to overcome the bias problem.
PDF (3644 Kb) DOI: 10.4173/mic.2003.3.1
DOI forward links to this article:
[1] David Di Ruscio (2009), doi:10.4173/mic.2009.2.3 |
[2] David Di Ruscio (2009), doi:10.4173/mic.2009.4.2 |
[3] Bernt Lie, David Di Ruscio, Rolf Ergon, Bjørn Glemmestad, Maths Halstensen, Finn Haugen, Saba Mylvaganam, Nils-Olav Skeie and Dietmar Winkler (2009), doi:10.4173/mic.2009.3.4 |
[4] A. Sæther, C. Arakaki, C. Ratnayake and D. Di Ruscio (2009), doi:10.1080/02726350902991007 |
[5] Geir W. Nilsen and David Di Ruscio (2005), doi:10.4173/mic.2005.3.3 |
[6] Jan-Willem van Wingerden, Marco Lovera, Marco Bergamasco, Michel Verhaegen and Gijs van der Veen (2013), doi:10.1049/iet-cta.2012.0653 |
[7] Martin Grossl (2013), doi:10.1109/SysTol.2013.6693941 |
[8] Morten Bakke, Tor A. Johansen and Sigurd Skogestad (2010), doi:10.3182/20100705-3-BE-2011.00099 |
[9] Geir Werner Nilsen and David Di Ruscio (2004), doi:10.1016/S1474-6670(17)31893-1 |
[10] Qifan Zhang, Junjie Shen, Mingtian Tan, Zhe Zhou, Zhou Li, Qi Alfred Chen and Haipeng Zhang (2022), doi:10.1145/3564625.3567977 |
[11] Christer Dalen and David Di Ruscio (2022), doi:10.4173/mic.2022.4.1 |
[1] Di RUSCIO, D. (1997). A method for identification of combined deterministic stochastic systems, In: Applications of Computer Aided Time Series Modeling, Lecture Notes in Statistics 119, Eds. M. Aoki and A. M. Havenner, Springer Verlag, ISBN 0-387-94751-5.
[2] Di RUSCIO, D. (1997). On Subspace Identification of the Extended Observability Matrix, In the proceedings of the 36th Conference on Decision and Control 1997, San Diego, California, December 6-11.
[3] Di RUSCIO, D. (1996). Combined Deterministic and Stochastic System Identification and Realization: DSR-a subspace approach based on observations, Modeling, Identification and Control, Vol. 17, No.3 doi:10.4173/mic.1996.3.3
[4] Di RUSCIO, D. (1995). A method for identification of combined deterministic stochastic systems: robust implementation, The Third European Control Conference ECC95, September 5-8, Rome, Italy.
[5] LARIMORE, W. E. (1990). Canonical Variate Analysis in Identification, Filtering and Adaptive Control, Proc of the 29th Conference on Decision and Control, Honolulu, Hawaii, December 1990, pp. 596-604.
[6] KUNG, S. Y. (1978). A new identification and Model Reduction Algorithm via Singular Value Decomposition, Conf on Circuits, Systems and Computers, Pacific Grove, CA, November 1978, pp. 705-714.
[7] VAN OVERSCHEE, P. DE MOOR B. (1994). N4SID: Subspace Algorithms for the Identification of Combined Deterministic Stochastic Systems, Automatica, Vol. 30, No. 1, pp. 75-94 doi:10.1016/0005-1098(94)90230-5
[8] VAN OVERSCHEE, P. DE MOOR, B. (1996). Subspace Identification for linear Systems: theory-implementation-applications, Kluwer Academic Publishers.
[9] VAN OVERSCHEE, P. DE MOOR., B. (1996). Closed loop subspace system identification, Internal report. Katholieke Universiteit Leuven. Department Elektrotechniek. ESAT-SISTA/TR 1996-521.
[10] VAN OVERSCHEE, P. DE MOOR, B. (1997). Closed loop subspace system identification, In the proceedings of the 36th Conference on Decision and Control 1997, San Diego, California, December 6-14.
[11] VERHAGEN, M. (1994). Identification of the deterministic part of MIMO state space models given on innovations form from input output data, Automatica, Vol. 30, No. 1, pp. 61-74 doi:10.1016/0005-1098(94)90229-1
[12] VIBERG, M. (1995). Subspace-Based Methods for the Identification of Linear Time-invariant Systems, Automatica, Vol. 31, No. 12, pp. 1835-1851 doi:10.1016/0005-1098(95)00107-5
BibTeX:
@article{MIC-2003-3-1,
title={{Subspace System Identification of the Kalman Filter}},
author={Di Ruscio, David},
journal={Modeling, Identification and Control},
volume={24},
number={3},
pages={125--157},
year={2003},
doi={10.4173/mic.2003.3.1},
publisher={Norwegian Society of Automatic Control}
};