“A comparison of implementation strategies for MPC”

Authors: Bernt Lie, Marta D. Díez and Tor A. Hauge,
Affiliation: Telemark University College
Reference: 2005, Vol 26, No 1, pp. 39-50.

Keywords: Model predictive control; Quadratic programming; Comparison of QP solvers

Abstract: Four quadratic programming (QP) formulations of model predictive control (MPC) are compared with regards to ease of formulation, memory requirement, and numerical properties. The comparison is based on two example processes: a paper machine model, and a model of the Tennessee Eastman challenge process; the number of free variables range from 150-1400. Five commercial QP solvers are compared. Preliminary results indicate that dense solvers still are the most efficient, but sparse solvers hold great promise.

PDF PDF (1280 Kb)        DOI: 10.4173/mic.2005.1.3

DOI forward links to this article:
[1] Bernt Lie, David Di Ruscio, Rolf Ergon, Bjørn Glemmestad, Maths Halstensen, Finn Haugen, Saba Mylvaganam, Nils-Olav Skeie and Dietmar Winkler (2009), doi:10.4173/mic.2009.3.4
[2] Gabriele Pannocchia, James B. Rawlings and Stephen J. Wright (2007), doi:10.1016/j.automatica.2006.10.019
[3] Daniel Axehill, Lieven Vandenberghe and Anders Hansson (2010), doi:10.1016/j.automatica.2010.06.015
[4] Daniel Axehill and Anders Hansson (2008), doi:10.1109/CDC.2008.4738961
[5] Marc-Alexandre Boechat, Junyi Liu, Helfried Peyrl, Alessandro Zanarini and Thomas Besselmann (2013), doi:10.1109/MED.2013.6608929
[6] Isak Nielsen, Daniel Ankelhed and Daniel Axehill (2013), doi:10.1109/CDC.2013.6760450
[7] D. Axehill and A. Hansson (2014), doi:10.1007/978-94-007-7006-5_23
[8] Daniel Axehill and Anders Hansson (2012), doi:10.1007/978-1-4471-2265-4_14
References:
[1] BARTLETT, R. A., BIEGLER, L. T., BACKSTROM, J. COPAL, V. (2002). Quadratic Programming Algorithms for Large-Scale Model Predictive Control, Journal of Process Control, 12, p. 775 doi:10.1016/S0959-1524(02)00002-1
[2] CAMACHO, E. F. BORDONS, C. (1999). Model Predictive Control, Advanced Textbooks in Control and Signal Processing, Springer, London.
[3] COLEMAN, T., BRANCH M. A. GRACE, A. (1999). Optimization Toolbox for Use with MATLAB, User´s Guide, Version 2, The MathWorks, Inc., Natick, Massachusetts.
[4] DOWNS, I VOGEL, E. (1993). A Plant-Wide Industrial Process Control Problem, Computers chem. Engng., 1.3, pp. 245-255.
[5] GILL P. E., HAMMARLING, S. J., MURRAY, W., SAUNDERS, M. A. WRIGHT, M. H. (1986). User´s Guide for Lssol, Version 1,0: A Fortran Package for Constrained Linear Least-Squares and Convex Quadratic Programming. Technical Report SOL 86-1, Systems Optimization Laboratory, Dept. Operations Research, Stanford University.
[6] GILL, P.E., MURRAY, W. SAUNDERS, M. A. (1995). User´s Guide for Qpopt 1,0: A Fortran Package for Quadratic Programming, Technical Report SOL 95-4, Systems Optimization Laboratory, Dept. Operations Research, Stanford University.
[7] GILL P. E., MURRAY, W. SAUNDERS, M. A. (1997). User´s Guide for Sqopt 5,3: A Fortran Package for Large-Scale Linear and Quadratic Programming, Technical Report Draft, Systems Optimization Laboratory, Dept. Operations Research, Stanford University.
[8] GOLUB, G. H. VAN LOAN, C. F. (1996). Matrix Computations, third edn, The Johns Hopkins University Press, Baltimore.
[9] HAUGE, T. A. LIE, B. (2002). Paper Machine Modeling at Norske Skog Saugbrugs: A Mechanistic Approach, Modeling, Identification and Control. 2.1 doi:10.4173/mic.2002.1.2
[10] HOLMSTRÖM, K. (2001). The Tomlab Optimization Environment V3,0 User´s Guide, Technical report, HKH MatrixAnalys AB.
[11] JURICEK, B. C., SEBORG, D. E. LARIMORE, W. E. (2001). Identification of the Tennessee Eastman Challenge Process with Subspace Methods, Cont. Engng. Practice, 9, pp. 1337-1351 doi:10.1016/S0967-0661(01)00124-1
[12] MACIEJOWSKI, J. (2002). Predictive Control with Constraints, Prentice Hall, Harlow, England.
[13] McAVOY, T. YE, N. (1994). Base Control for the Tennessee Eastman Problem, Computers chem. Engng., 1.5, pp. 383-413.
[14] MUSKE, K. R. RAWLINGS, J. B. (1993). Model Predictive Control with Linear Models, Math Journal, 3.2, pp. 262-287.
[15] RAWLINGS, J. B. MUSKE, K. R. (1993). Stability of Constrained Receding Horizon Control, IEEE Trans. Auto. Cont., 3.10, pp. 1512-1516 doi:10.1109/9.241565
[16] SEBORG, D. E., EDGAR, T. F. MELLICHAMP, D. A. (1989). Process Dynamics and Control, John Wiley and Sons, New York.


BibTeX:
@article{MIC-2005-1-3,
  title={{A comparison of implementation strategies for MPC}},
  author={Lie, Bernt and Díez, Marta D. and Hauge, Tor A.},
  journal={Modeling, Identification and Control},
  volume={26},
  number={1},
  pages={39--50},
  year={2005},
  doi={10.4173/mic.2005.1.3},
  publisher={Norwegian Society of Automatic Control}
};