“Time- vs. Frequency-domain Identification of Parametric Radiation Force Models for Marine Structures at Zero Speed”

Authors: Tristan Perez and Thor I. Fossen,
Affiliation: University of Newcastle (Australia) and NTNU, Department of Engineering Cybernetics
Reference: 2008, Vol 29, No 1, pp. 1-19.

Keywords: Identification, Frequency-domain, Time-domain, Marine structure models

Abstract: The dynamics describing the motion response of a marine structure in waves can be represented within a linear framework by the Cummins Equation. This equation contains a convolution term that represents the component of the radiation forces associated with fluid memory effects. Several methods have been proposed in the literature for the identification of parametric models to approximate and replace this convolution term. This replacement can facilitate the model implementation in simulators and the analysis of motion control designs. Some of the reported identification methods consider the problem in the time domain while other methods consider the problem in the frequency domain. This paper compares the application of these identification methods. The comparison is based not only on the quality of the estimated models, but also on the ease of implementation, ease of use, and the flexibility of the identification method to incorporate prior information related to the model being identified. To illustrate the main points arising from the comparison, a particular example based on the coupled vertical motion of a modern containership vessel is presented.

PDF PDF (571 Kb)        DOI: 10.4173/mic.2008.1.1

DOI forward links to this article:
[1] François Rongère, Jean-Michel Kobus, Aurélien Babarit and Gérard Delhommeau (2011), doi:10.1051/lhb/2011052
[2] Tristan Perez and Thor Inge Fossen (2009), doi:10.4173/mic.2009.1.1
[3] Tristan Perez and Thor I. Fossen (2008), doi:10.4173/mic.2008.3.2
[4] Tristan Perez and Thor I. Fossen (2011), doi:10.1016/j.oceaneng.2010.11.004
[5] Oddgeir Dalane, Finn Faye Knudsen and Sveinung Lo set (2012), doi:10.1115/1.4004633
[6] Tristan Perez and Mogens Blanke (2012), doi:10.1016/j.arcontrol.2012.03.010
[7] Mingsheng Chen, Rodney Eatock Taylor and Yoo Sang Choo (2014), doi:10.1016/j.oceaneng.2013.10.004
[8] Adi Kurniawan and Torgeir Moan (2012), doi:10.1016/j.egypro.2012.03.015
[9] Giorgio Bacelli and John Ringwood (2013), doi:10.1016/j.ijome.2013.11.011
[10] P. Ricci, J. Lopez, M. Santos, P. Ruiz-Minguela, J.L. Villate, F. Salcedo and A.F.deO. Falca o (2011), doi:10.1049/iet-rpg.2009.0197
[11] (2011), doi:10.1002/9781119994138.refs
[12] A. Iturrioz, R. Guanche, J.A. Armesto, M.A. Alves, C. Vidal and I.J. Losada (2014), doi:10.1016/j.oceaneng.2013.11.023
[13] José A. Armesto, Raúl Guanche, Arantza Iturrioz, César Vidal and Iñigo J. Losada (2014), doi:10.1016/j.oceaneng.2014.01.013
[14] Anup J. Nambiar, David I.M. Forehand, Morten M. Kramer, Rico H. Hansen and David M. Ingram (2015), doi:10.1016/j.ijome.2014.11.002
[15] Mattia Raffero, Michele Martini, Biagio Passione, Giuliana Mattiazzo, Ermanno Giorcelli and Giovanni Bracco (2015), doi:10.1155/2015/980613
[16] Jesús M. de la Cruz García, Joaquín Aranda Almansa and José M. Girón Sierra (2012), doi:10.1016/j.riai.2012.05.001
[17] Josh Davidson, Simone Giorgi and John V. Ringwood (2015), doi:10.1016/j.oceaneng.2015.04.056
[18] José A. Armesto, Raúl Guanche, Fernando del Jesus, Arantza Iturrioz and Iñigo J. Losada (2015), doi:10.1007/s40722-015-0027-1
[19] Wanan Sheng, Raymond Alcorn and Anthony Lewis (2015), doi:10.1016/j.oceaneng.2015.06.023
[20] Giacomo Moretti, Marco Fontana and Rocco Vertechy (2015), doi:10.1007/s11012-015-0235-8
[21] Francesco Fusco and John V. Ringwood (2013), doi:10.1109/TSTE.2012.2196717
[22] Elisabetta Tedeschi and Maider Santos-Mugica (2014), doi:10.1109/TPWRS.2013.2282213
[23] Sebastien Olaya, Jean-Matthieu Bourgeot and Mohamed Benbouzid (2014), doi:10.1109/ICGE.2014.6835390
[24] Ryan G. Coe and Diana L. Bull (2014), doi:10.1109/OCEANS.2014.7003037
[25] Giorgio Bacelli, Philip Balitsky and John V. Ringwood (2013), doi:10.1109/TSTE.2013.2267961
[26] Alessandro Bozzetto and Elisabetta Tedeschi (2014), doi:10.1109/EVER.2014.6844040
[27] Yingguang Wang (2015), doi:10.1016/j.oceaneng.2015.09.049
[28] Dr Ahmed Masmoudi, Alessandro Bozzetto, Ole Christian Spro and Elisabetta Tedeschi (2015), doi:10.1108/COMPEL-12-2014-0342
[29] Francesco Ferri, Simon Ambühl, Boris Fischer and Jens Kofoed (2014), doi:10.3390/en7042246
[30] David I. M. Forehand, Aristides E. Kiprakis, Anup J. Nambiar and A. Robin Wallace (2016), doi:10.1109/TSTE.2015.2476960
[31] Hugo Mendonca and Sergio Martinez (2016), doi:10.1109/TSTE.2015.2466097
[32] Romain Genest and John V. Ringwood (2016), doi:10.1007/s40722-016-0058-2
[33] P. Ricci (2016), doi:10.1016/B978-0-12-803210-7.00003-7
[34] Simone Giorgi, Josh Davidson and John V. Ringwood (2016), doi:10.1109/TSTE.2016.2515500
[35] Frank Lemmer (né Sandner), Steffen Raach, David Schlipf and Po Wen Cheng (2016), doi:10.1016/j.egypro.2016.09.186
[36] N. Nevaranta, M. Goubej, T. Lindh, M. Niemela and O. Pyrhonen (2016), doi:10.1109/EPE.2016.7695535
[37] Romain Genest and John V. Ringwood (2017), doi:10.1109/TCST.2016.2554524
[38] Marco Alves (2017), doi:10.1007/978-3-319-39889-1_10
[39] Zhihuan Hu, Xin Li, Wenhua Zhao and Xiao Wu (2017), doi:10.1016/j.apor.2017.03.013
[40] Giorgio Bacelli, Ryan Coe, David Patterson and David Wilson (2017), doi:10.3390/en10040472
[41] Nicolás Faedo, Sébastien Olaya and John V. Ringwood (2017), doi:10.1016/j.ifacsc.2017.07.001
[42] Ryan G. Coe, Carlos Michelen, Aubrey Eckert-Gallup and Cédric Sallaberry (2017), doi:10.1016/j.renene.2017.09.056
[43] Hong Gao and Yang Yu (2017), doi:10.1016/j.energy.2017.11.036
[44] Ryan G. Coe, Giorgio Bacelli, David G. Wilson, Ossama Abdelkhalik, Umesh A. Korde and Rush D. Robinett III (2017), doi:10.1016/j.ijome.2017.11.001
[45] Yizhi Ye and Weidong Chen (2017), doi:10.1177/1687814017722081
[46] J. Seixas de Medeiros and S. Brizzolara (2018), doi:10.1155/2018/1710253
[47] Zhijia Wu, Carlos Levi and Segen F. Estefen (2018), doi:10.1016/j.apor.2018.02.009
[48] Nedeleg Bigi, Morgann Behrel, Kostia Roncin, Jean-Baptiste Leroux, Alain Neme, Christian Jochum and Yves Parlier (2018), doi:10.1051/lhb/2018002
[49] Weixing Chen, Feng Gao and Xiangdun Meng (2018), doi:10.1177/1475090218765803
[50] Nicolás Faedo, Yerai Peña-Sanchez and John V. Ringwood (2018), doi:10.1016/j.oceaneng.2018.05.037
[51] Ossama Abdelkhalik and Shangyan Zou (2018), doi:10.1016/j.renene.2018.08.004
[52] Ø.W. Petersen, O. Øiseth and E. Lourens (2019), doi:10.1016/j.ymssp.2018.10.040
[53] Biao Su, Karl Gunnar Aarsæther and David Kristiansen (2019), doi:10.1115/1.4042263
[54] Hong Gao and Ruizhi Liang (2019), doi:10.1002/er.4398
[55] Kasper Jessen, Kasper Laugesen, Signe M. Mortensen, Jesper K. Jensen and Mohsen N. Soltani (2019), doi:10.3390/app9061244
[56] Wanan Sheng (2019), doi:10.1016/j.rser.2019.04.030
[57] Fushun Liu, Qiang Fu and Zhe Tian (2019), doi:10.1080/17445302.2019.1687145
[58] Li Liu, Liming Guo, Puyue Hou and Yuying Zhou (2019), doi:10.1088/1742-6596/1314/1/012111
[59] Siyuan Zhan, Jing Na, Guang Li and Bin Wang (2020), doi:10.1109/TSTE.2018.2889767
[60] G. Bracco, M. Canale and V. Cerone (2020), doi:10.1016/j.conengprac.2020.104299
[61] I M Dantsevich, M N Lyutikova, AY Novikov and S A Osmukha (2020), doi:10.1088/1757-899X/873/1/012035
[62] Nedeleg Bigi, Kostia Roncin, Jean-Baptiste Leroux and Yves Parlier (2020), doi:10.3390/jmse8070486
[63] Signe M. Mortensen, Kasper Laugesen, Jesper K. Jensen, Kasper Jessen and Mohsen Soltani (2018), doi:10.1109/CCTA.2018.8511565
[64] G. Bracco, M. Canale and V. Cerone (2019), doi:10.1109/ICCA.2019.8899936
[65] Kostia Roncin, Morgan Behrel, Paul Iachkine and Jean-Baptiste Leroux (2020), doi:10.3390/app10186148
[66] Panagiotis Dafnakis, Amneet Pal Singh Bhalla, Sergej Antonello Sirigu, Mauro Bonfanti, Giovanni Bracco and Giuliana Mattiazzo (2020), doi:10.1063/5.0022401
[67] Beatrice Fenu, Valentino Attanasio, Pietro Casalone, Riccardo Novo, Giulia Cervelli, Mauro Bonfanti, Sergej Antonello Sirigu, Giovanni Bracco and Giuliana Mattiazzo (2020), doi:10.3390/jmse8060439
[68] Mauro Bonfanti, Andrew Hillis, Sergej Antonello Sirigu, Panagiotis Dafnakis, Giovanni Bracco, Giuliana Mattiazzo and Andrew Plummer (2020), doi:10.3390/jmse8100825
[69] Alper Burgac and Hakan Yavuz (2020), doi:10.1007/s42452-020-03230-y
[70] Luca Parrinello, Panagiotis Dafnakis, Edoardo Pasta, Giovanni Bracco, Peiman Naseradinmousavi, Giuliana Mattiazzo and Amneet Pal Singh Bhalla (2020), doi:10.1063/5.0028500
[71] Yubin Jia, Ke Meng, Lu Dong, Tongming Liu, Changyin Sun and Zhao Yang Dong (2021), doi:10.1109/TSTE.2020.3012755
[72] (2021), doi:10.1002/9781119575016.ref
[73] Bingqi Liu, Carlos Levi, Segen F. Estefen, Zhijia Wu and Menglan Duan (2021), doi:10.1007/s11804-021-00202-5
[74] Bingqi Liu, Huanggao Yi, Carlos Levi, Segen F. Estefen, Zhijia Wu and Menglan Duan (2021), doi:10.1016/j.oceaneng.2021.109139
[75] Bingyong Guo and John V. Ringwood (2021), doi:10.1016/j.apenergy.2021.117100
[76] Biao Su, Andrei Tsarau, Per Christian Endresen, David Kristiansen and Pal Furset Lader (2021), doi:10.1016/j.oceaneng.2021.109210
[77] Hong Gao and Jie Xiao (2021), doi:10.1016/j.apenergy.2021.117278
[78] Binbin Li (2021), doi:10.1016/j.apor.2021.102707
[79] Romain Lecuyer-Le Bris, Marc Le Boulluec, Jean-Frederic Charpentier and Mohamed Benbouzid (2021), doi:10.3390/jmse9070768
[80] Bingyong Guo and John V. Ringwood (2021), doi:10.1049/rpg2.12302
[81] Imanol Touzon, Victor Petuya, Vincenzo Nava, Maria Alonso-Reig and Inigo Mendikoa (2022), doi:10.1007/978-3-030-87383-7_7
[82] Mauro Bonfanti, Sergej Antonello Sirigu and Giuliana Mattiazzo (2021), doi:10.1109/ICECCME52200.2021.9590910
[83] Ryan O. Berriel, Milad Shadman, Zhijia Wu, Robson F. S. Dias, Richard M. Stephan and Segen F. Estefen (2021), doi:10.1007/s00202-021-01244-2
[84] Nicolas Faedo, Fabio Carapellese, Edoardo Pasta and Giuliana Mattiazzo (2022), doi:10.1016/j.apor.2021.102958
[85] Shangyan Zou and Ossama Abdelkhalik (2021), doi:10.1109/JOE.2020.3016073
[86] Jian Tan, Henk Polinder, Antonio Jarquin Laguna and Sape Miedema (2022), doi:10.1016/j.apor.2022.103110
[87] Takaaki Hanaki, Mina Takaoka and Munehiko Minoura (2022), doi:10.1016/j.apor.2022.103158
[88] Jian Tan, Henk Polinder, Antonio Jarquin Laguna and Sape Miedema (2022), doi:10.1016/j.oceaneng.2022.111347
[89] Aleksander Grm and Satyanand Panda (2022), doi:10.1016/j.oceaneng.2022.111269
[90] Guglielmo Papini, Francisco Javier Dores Dores Piuma, Nicolas Faedo, John V. Ringwood and Giuliana Mattiazzo (2022), doi:10.3390/jmse10050656
[91] Fabio Carapellese, Edoardo Pasta, Bruno Paduano, Nicolas Faedo and Giuliana Mattiazzo (2022), doi:10.1016/j.oceaneng.2022.111444
[92] N. Faedo, G. Giorgi, J. V. Ringwood and G. Mattiazzo (2022), doi:10.1007/s11071-022-07530-3
[93] Mauro Bonfanti and Giovanni Bracco (2022), doi:10.1007/978-3-031-10776-4_100
[94] F.D. Mosquera, N. Faedo, C.A. Evangelista, P.F. Puleston and J.V. Ringwood (2022), doi:10.1016/j.ifacol.2022.10.454
[95] Ting Liu, Karl H. Halse, Bernt J. Leira, Zhiyu Jiang, Wei Chai, Hans-P. Brathaug and Hans P. Hildre (2023), doi:10.1016/j.marstruc.2022.103341
[96] Mahdiyeh Farajvand, Demian Garcia-Violini and John V. Ringwood (2023), doi:10.1016/j.oceaneng.2023.113635
[97] Jian Tan, Henk Polinder, Antonio Jarquin Laguna and Sape Miedema (2023), doi:10.1016/j.oceaneng.2023.114195
[98] Fabio Carapellese, Edoardo Pasta, Sergej Antonello Sirigu and Nicolas Faedo (2023), doi:10.1016/j.ymssp.2023.110356
[99] Mauro Bonfanti and Sergej Antonello Sirigu (2023), doi:10.1016/j.ymssp.2023.110398
[100] Sebastian Bielicki (2023), doi:10.1007/978-3-031-35173-0_32
[101] Jian Tan, Wei Tao, Antonio Jarquin Laguna, Henk Polinder, Yihan Xing and Sape Miedema (2023), doi:10.1016/j.apor.2023.103650
[102] Francis Valentinis, Thomas Battista and Craig Woolsey (2023), doi:10.1109/JOE.2023.3234811
[103] M. Wermbter, L. Altenbach, O. Detlefsen and M. Abdel-Maksoud (2023), doi:10.1088/1757-899X/1288/1/012024
[104] Hafiz Ahsan Said, Demian Garcia-Violini, Nicolas Faedo and John V. Ringwood (2024), doi:10.1109/OJCSYS.2023.3331193
[105] Salman Husain, Gordon G. Parker, David Forehand and Enrico Anderlini (2023), doi:10.3390/en17010006
[106] C Ren, Y Xing and L Moen (2023), doi:10.1088/1757-899X/1294/1/012009
[107] Mingsheng Chen, Meiyan Zou, Ling Zhu, MingJun Ouyang, Qiyu Liang and Wenhua Zhao (2024), doi:10.1016/j.oceaneng.2024.116721
[108] F. D. Mosquera, N. Faedo, C. A. Evangelista, J. V. Ringwood and P. F. Puleston (2024), doi:10.1109/TSTE.2023.3343995
[109] Jian Tan and George Lavidas (2024), doi:10.1016/j.oceaneng.2024.118581
[110] Giuseppe Giorgi (2024), doi:10.1016/j.ijmecsci.2024.109544
[111] Guglielmo Papini, Edoardo Pasta, Yerai Pena-Sanchez, Facundo D. Mosquera, Demian Garcia-Violini, Francesco Ferri and Nicolas Faedo (2024), doi:10.1016/j.conengprac.2024.106019
[112] Facundo D. Mosquera, Pedro Fornaro, Paul F. Puleston, Carolina A. Evangelista and John V. Ringwood (2024), doi:10.1109/CCTA60707.2024.10666656
[113] Tania Demonte Gonzalez, Enrico Anderlini, Houssein Yassin and Gordon Parker (2024), doi:10.3390/en17205112
References:
[1] Aguero, J. C. (2005). System Identification Methodologies Incorporating Constraints, Ph.D. thesis, Department of Elec. Eng. and Comp. Sc., The Univeristy of Newcastle, Australia.
[2] Al-Saggaf, U. Franklin, G. (1988). Model reduction via blanced realizations: An extension and frequency weighting techniques, IEEE Transactions on Automatic Control, 3.9:687 - 692 doi:10.1109/9.1280
[3] Cummins, W. (1962). The impulse response function and ship motion, Technical Report 1661, David Taylor Model Basin - DTNSRDC.
[4] Damaren, C. (2000). Time-domain floating body dynamics by rational approximations of the radiation impedance and diffraction mapping, Ocean Engineering, 27:687 - 705 doi:10.1016/S0029-8018(99)00015-3
[5] Faltinsen, O. (1990). Sea Loads on Ships and Offshore Structures, Cambridge University Press.
[6] Greenhow, M. (1986). High- and low-frequency asymptotic consequences of the Kramers-Kronig relations, J. Eng. Math., 20:293 - 306 doi:10.1007/BF00044607
[7] Hjulstad, A., Kristansen, E., Egeland, O. (2004). Statespace representation of frequency-dependant hydrodynamic coefficients, In Proc. IFAC Conference on Control Applications in Marine Systems.
[8] Ho, B. Kalman, R. (1966). Effective reconstruction of linear state-variable models from input/output functions, Regelungstechnik, 1.12:417 - 441.
[9] Holappa, K. Falzarano, J. (1999). Application of extended state space to nonlinear ship rolling, Ocean Engineering, 26:227 - 240 doi:10.1016/S0029-8018(97)10027-0
[10] Jefferys, E. (1984). Simulation of wave power devices, Applied Ocean Research, 6(1):31 - 39 doi:10.1016/0141-1187(84)90026-9
[11] Jefferys, E., Broome, D., Patel, M. (1984). A transfer function method of modelling systems with frequency depenant coefficients, Journal of Guidance Control and Dynamics, .4:490 - 494 doi:10.2514/3.19883
[12] Jefferys, E. Goheen, K. (1992). Time domain models from frequency domain descriptions: Application to marine structures, International Journal of Offshore and Polar Engineering, 2:191 - 197.
[13] Jordan, M. Beltran-Aguedo, R. (2004). Optimal identification of potential-radiation hydrodynamics of moored floating stuctures, Ocean Engineering. 31:1859-1914 doi:10.1016/j.oceaneng.2004.01.007
[14] Journee, J. (1993). Hydromechanic coefficients for calculating time domain motions of cutter suction dredges by cummins equations, Technical report, available http://www.shipmotions.nl, Delft University of Technology, Ship Hydromechanics Laboratory, Mekelweg 2, 2628 CD Delft, The Netherlands.
[15] Kaasen, K. Mo, K. (2004). Efficient time-domain model for frequency-dependent added mass and damping, In 23rd Conference on Offshore Mechanics and Artic Enginnering.OMAE, Vancouver, Canada.
[16] Kailath, T. (1980). Linear systems, Prentice Hall.
[17] Khalil, H. (2000). Nonlinear Systems, Prentice Hall.
[18] Kristansen, E. Egeland, O. (2003). Frequency dependent added mass in models for controller design for wave motion ship damping, In 6th IFAC Conference on Manoeuvring and Control of Marine Craft MCMC'03, Girona, Spain.
[19] Kristiansen, E., Hjuslstad, A., Egeland, O. (2005). Statespace representation of radiation forces in timedomain vessel models, Ocean Engineering. 32:2195 - 2216 doi:10.1016/j.oceaneng.2005.02.009
[20] Kung, S. (1978). A new identification and model reduction algorithm via singular value decompositions, Twelth Asilomar Conf. on Circuits, Systems and Computers, pp. 705-714.
[21] Levy, E. (1959). Complex curve fitting, IRE Trans. Autom. Control, AC-4:37 - 43.
[22] Lozano, R., Brogliato, B., Egeland, O., Masche, B. (2000). Dissipative Systems Analysis and Control, Theory and Applications, Springer.
[23] McCabe, A., Bradshaw, A., Widden, M. (2000). A timedomain model of a floating body using transforms, In Proc. of 6th European Wave and Tidal energy Conference. University of Strathclyde, Glasgow, U.K.
[24] Newman, J. (1977). Marine Hydrodynamics, MIT Press.
[25] Nocedal, J. Wright, S. J. (2006). Numerical Optimization, Springer.
[26] Ogilvie, T. (1964). Recent progress towards the understanding and prediction of ship motions, In 6th Symposium on Naval Hydrodynamics.
[27] Parzen, E. (1954). Some conditions for uniform convergence of integrals, Proc. of The American mathematical Society, .1:55 - 58 doi:10.2307/2032105
[28] Perez, T. Fossen, T. (2007). A derivation of high-frequency asymptotic values of 3D added mass and damping based on properties of the Cummins equation, Technical report, School of Elec. Eng. and Comp. Science. The University of Newcaslte, AUSTRALIA.
[29] Perez, T. Lande, Ø. (2006). A frequency-domain approach to modelling and identification of the force to motion vessel response, In Proc. of 7th IFAC Conference on Manoeuvring and Control of marine Craft, Lisbon, Portugal.
[30] Salvesen, N., Tuck, E., Faltinsen, O. (1970). Ship motions and sea loads, Trans. The Society of Naval Architects and Marine Engineers - SNAME, 10:345 - 356.
[31] Sanathanan, C. Koerner, J. (1963). Transfer function synthesis as a ratio of two complex polynomials, IEEE Trans. of Autom. Control.
[32] Seron, M., Braslavsky, J., Goodwin, G. (1997). Fundamental Limitations in Filtering and Control, Springer.
[33] Söding, H. (1982). Leckstabilität im seegang, Technical report, Report 429 of the Institue f¨ur Schiffbau, Hamburg.
[34] Sutulo, S. Guedes-Soares, C. (2005). An implementation of the method of auxiliary state variables for solving seakeeping problems, Int. Ship Buildg. Progress. 5.4:357 - 384.
[35] Taghipour, R., Perez, T., Moan, T. (2008). Hybrid frequency - time domain models for dynamic response analysis of marine structrues, Ocean Engineering doi:10.1016/j.oceaneng.2007.11.002
[36] Tick, L. (1959). Differential equations with frequency dependent coefficients, Ship Research, .2:45 - 46.
[37] Unneland, K. (2007). Identification and Order Reduction of Radiation Force Models of Marine Structures, Ph.D. thesis, Department of engineerign Cybernetics, Norwegian University of Science and Tehcnology, NTNU. Norway.
[38] Unneland, K., Kristiansen, E., Egeland, O. (2005). Comparative study of algorithms obtaining reduced order state-space form of radiation forces, In Proceedings of the OCEANS'05, Washington D.C., USA.
[39] Verhaegen, M. Verdult, V. (2007). Filtering and System Identification, Cambridge.
[40] Xia, J., Wang, Z., Jensen, J. (1998). Nonlinear wave-loads and ship responses by a time-domain strip theory, Marine strcutures, 11:101 - 123.
[41] Yu, Z. Falnes, J. (1995). Spate-space modelling of a vertical cylinder in heave, Applied Ocean Research, 17:265 - 275 doi:10.1016/0141-1187(96)00002-8
[42] Yu, Z. Falnes, J. (1998). State-space modelling of dynamic systems in ocean engineering, Journal of hydrodynamics, China Ocean Press, pp. 1 - 17.


BibTeX:
@article{MIC-2008-1-1,
  title={{Time- vs. Frequency-domain Identification of Parametric Radiation Force Models for Marine Structures at Zero Speed}},
  author={Perez, Tristan and Fossen, Thor I.},
  journal={Modeling, Identification and Control},
  volume={29},
  number={1},
  pages={1--19},
  year={2008},
  doi={10.4173/mic.2008.1.1},
  publisher={Norwegian Society of Automatic Control}
};