“General Solutions to Functional and Kinematic Redundancy”
Authors: Pål J. From and Jan T. Gravdahl,Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 2008, Vol 29, No 2, pp. 39-50.
Keywords: Robotics, Kinematics, Redundancy
Abstract: A systematic and general approach to represent functional redundancy is presented. It is shown how this approach allows the freedom provided by functional redundancy to be integrated into the inverse geometric problem for real-time applications and how it can be utilised to improve performance. A set of new iterative solutions to the inverse geometric problem, well suited for kinematically redundant manipulators, is also presented.
PDF (322 Kb) DOI: 10.4173/mic.2008.2.1
DOI forward links to this article:
[1] Mayur V. Andulkar, Shital S. Chiddarwar and Akshay S. Marathe (2015), doi:10.1016/j.jmsy.2015.03.006 |
[1] Ahuactzin, J. M. Gupka, K. K. (1999). The kinematic roadmap: A motion planning based global approach for inverse kinematics of redundant robots, IEEE Trans. on Robotics and Automation, 15.
[2] Alpern, B., Carter, L., Grayson, M., Pelkie, C. (1993). Orientation maps: Techniques for visualizing rotations, a consumers guide. IEEE Conference on Visualization, pp. 183-188.
[3] From, P. J. (2006). Modelling and Optimal Trajectory Planner for Industrial Spray Paint Robots, Master's thesis, NTNU.
[4] From, P. J. Gravdahl, J. T. (2007). Representing attitudes as sets of frames, Proc. American Control Conference, pp. 2465-2472.
[5] Grudic, G. Z. Lawrence, P. D. (1993). Iterative inverse kinematics with manipulator configuration, IEEE Transactions on Robotics and Automation, no. 4:476-483 doi:10.1109/70.246059
[6] Gwak, S., Kim, J., Park, F. C. (2003). Numerical optimization on the euclidean group with applications to camera calibration, IEEE Transactions on Robotics and Automation, 19:65-74 doi:10.1109/TRA.2002.807530
[7] Johnson, M. P. (1995). Exploiting Quaternions to Support Expressive Interactive Character Motion, Ph.D. thesis, MIT.
[8] Khalil, W. Dombre, E. (2002). Modeling, Identification and Control of Robots, Hermes Penton.
[9] Kuipers, J. B. (2002). Quaternions and Rotation Sequences, Princeton University Press.
[10] Luenberger, D. G. (2003). Linear and Nonlinear Programming, Kluwer Academic Publishers.
[11] Perdereau, V., Passi, C., Drouin, M. (2002). Real-time control of redundant robotic manipulators for mobile obstacle avoidance, Robotics and Autonomous Systems, 41 doi:10.1016/S0921-8890(02)00274-9
[12] Wang, L.-C. T. Chen, C. C. (1991). A combined optimization method for solving the inverse kinematics problem of mechanical manipulators, IEEE Trans. on Robotics and Automation, no. 4 doi:10.1109/70.86079
BibTeX:
@article{MIC-2008-2-1,
title={{General Solutions to Functional and Kinematic Redundancy}},
author={From, Pål J. and Gravdahl, Jan T.},
journal={Modeling, Identification and Control},
volume={29},
number={2},
pages={39--50},
year={2008},
doi={10.4173/mic.2008.2.1},
publisher={Norwegian Society of Automatic Control}
};