“Observer Design for Second-Order Distributed Parameter Systems in R2”
Authors: Tu Duc Nguyen,Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 2008, Vol 29, No 2, pp. 51-58.
Keywords: Distributed parameter systems; Observers; Second-order systems; Semigroup
Abstract: Observer design for second-order distributed parameter systems in R2 is addressed. Particularly, second order distributed parameter systems without distributed damping are studied. Based on finite number of measurements, exponentially stable observer is designed. The existence, uniqueness and stability of solutions of the observer are based on semigroup theory.
PDF (206 Kb) DOI: 10.4173/mic.2008.2.2
DOI forward links to this article:
[1] Xuyang Lou and Baotong Cui (2015), doi:10.1007/s00034-015-9976-9 |
[1] Anderson, B. D. O. Moore, J. B. (1990). Optimal Control: Linear Quadratic Methods, Prentice-Hall.
[2] Balas, M. J. (1999). Do all linear flexible structures have convergent second-order observers?, 22, No. 6.
[3] Bounit, H. Hammouri, H. (1997). Observers for infinite dimensional bilinear systems, Euro. J. Control, Vol. 2.
[4] Demetriou, M. A. (2004). Second order observers for second order distributed parameter systems, Systems Control Letters, Vol. 51 doi:10.1016/j.sysconle.2003.08.005
[5] Evans, L. C. (1998). Partial differential equations, American Mathematical Society, Vol. 19.
[6] Gauthier, J.-P. Kupka, I. (2001). Deterministic observation theory and applications, Cambridge University Press.
[7] I., S. Dym, C. (1991). Energy and Finite Element Methods in Structural Mechanics, Hemishere Publishing Corporation.
[8] Kristiansen, D. (2000). Modeling of Cylinder Gyroscopes and Observer Design for Nonlinear Oscillations, Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway.
[9] Luenberger, D. L. (1979). Introduction to Dynamic Systems, Wiley.
[10] Nguyen, T. D. Egeland, O. (2003). Tracking and observer design for a motorized euler-bernoulli beam, Proc. IEEE Int. Conference on Decision and Control, Maui, Hawaii.
[11] Nguyen, T. D. Egeland, O. (2006). Second-order observer for a class of second-order distributed parameter systems, Proc. IEEE Int. Conference on Decision and Control, San Diego, CA.
[12] Nijmeijer, H. (1999). New Directions in Nonlinear Observer Design, Springer-Verlag.
[13] Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag.
[14] Smyshlyaev, A. Kristic, M. (2005). Backstepping observers for a class of parabolic pdes, Systems and Control Letters, Vol. 54 doi:10.1016/j.sysconle.2004.11.001
[15] Vazquez, R. Krstic, M. (2005). A close-form observer for the channel flow navier-stokes system, Proc. IEEE Int. Conference on Decision and Control, Seville, Spain.
[16] Xu, D. J., C.-Z. Sallet, G. (2006). Infinite dimensional observers for vibrating systems, Proc. IEEE Int. Conference on Decision and Control, San Diego, CA.
BibTeX:
@article{MIC-2008-2-2,
title={{Observer Design for Second-Order Distributed Parameter Systems in R2}},
author={Nguyen, Tu Duc},
journal={Modeling, Identification and Control},
volume={29},
number={2},
pages={51--58},
year={2008},
doi={10.4173/mic.2008.2.2},
publisher={Norwegian Society of Automatic Control}
};