“Developing a Tool Point Control Scheme for a Hydraulic Crane Using Interactive Real-time Dynamic Simulation”
Authors: Mikkel M. Pedersen, Michael R. Hansen and Morten Ballebye,Affiliation: Aalborg University, University of Agder and Højbjerg Maskinfabrik A/S
Reference: 2010, Vol 31, No 4, pp. 133-143.
Keywords: Interactive real-time dynamic simulation, hydraulic crane, tool point control
Abstract: This paper describes the implementation of an interactive real-time dynamic simulation model of a hydraulic crane. The user input to the model is given continuously via joystick and output is presented continuously in a 3D animation. Using this simulation model, a tool point control scheme is developed for the specific crane, considering the saturation phenomena of the system and practical implementation.
PDF (596 Kb) DOI: 10.4173/mic.2010.4.2
DOI forward links to this article:
[1] Magnus B. Kjelland and Michael R. Hansen (2015), doi:10.1080/14399776.2015.1089071 |
[2] M.K. Bak, M.R. Hansen and H.R. Karimi (2011), doi:10.3182/20110828-6-IT-1002.03004 |
[3] Magnus B Kjelland, Ilya Tyapin, Geir Hovland and Michael R Hansen (2012), doi:10.3182/20120531-2-NO-4020.00034 |
[4] Morten H. Rudolfsen, Teodor N. Aune, Oddgeir Auklend, Leif Tore Aarland and Michael Ruderman (2017), doi:10.1109/AIM.2017.8014077 |
[5] Heikki Hyyti, Ville V. Lehtola and Arto Visala (2018), doi:10.1002/rob.21793 |
[6] Hong Bin Tang, Wu Ren and Shui Wang (2013), doi:10.4028/www.scientific.net/AMM.457-458.490 |
[7] Henrik C. Pedersen, Torben O. Andersen and Brian K. Nielsen (2015), doi:10.1115/1.4030801 |
[8] Jin-Kwang Kim (2018), doi:10.9726/kspse.2018.22.5.069 |
[9] Konrad Johan Jensen, Morten Kjeld Ebbesen and Michael Rygaard Hansen (2020), doi:10.3390/act9020027 |
[10] Michael Ruderman (2018), doi:10.1109/AMC.2019.8371125 |
[11] Felix Top, Julia Krottenthaler and Johannes Fottner (2020), doi:10.1109/SMC42975.2020.9282854 |
[12] Julia Malysheva, Stanislav Ustinov and Heikki Handroos (2021), doi:10.1109/TMECH.2020.3038929 |
[13] Konrad Johan Jensen, Morten Kjeld Ebbesen and Michael Rygaard Hansen (2022), doi:10.3390/robotics11020034 |
[14] Abdolreza Taheri, Amy Rankka, Pelle Gustafsson, Joni Pajarinen and Reza Ghabcheloo (2025), doi:10.1109/TRO.2024.3502252 |
[1] Beiner, L. (1997). Minimum force redundancy control of hydraulic cranes, Mechatronics, 7(6):537--547 doi:10.1016/S0957-4158(97)00020-2
[2] Beiner, L. Mattila, J. (1999). An improved pseudoinverse solution for redundant hydraulic manipulators, Robotica, 17:173--179 doi:10.1017/S0263574799001216
[3] Chan, T.F. Dubey, R.V. (1993). A weighted least-norm solution based scheme for avoiding joint limits for redundant manipulators, Robotics and Automation, 3:395--402.
[4] Ebbesen, M.K. (2007). Optimal Design of Flexible Multibody Systems, PhD Thesis, Aalborg University, Denmark.
[5] Esqué, S., Raneda, A., Ellman, A. (2003). Techniques for studying a mobile hydraulic crane in virtual reality, Int J Fluid Power, .2:25--34.
[6] Hansen, M.R. Andersen, T.O. (2005). A method for deriving the optimal operation of mobile hydraulic manipulators, In Proc 9th Scandinavian International Conference on Fluid Power, SICFP´05. Linköping, Sweden.
[7] Kabus, S. Haastrup, M. (2008). Simulations of Flexible Loader Crane with Designed Tool Point Control, Masters Thesis, Aalborg University, Denmark.
[8] Krus, G. Palmberg, J.O. (1992). Vector control of a hydraulic crane, In Proc International Off-Highway and Power plant Congress and Exposition. Milwaukee, USA.
[9] Linjama, M. Virvalo, T. (1999). State-space model for control design of multi-link flexible hydraulic cranes, In 6th International Conference on Fluid Power. Tampere, Finland.
[10] Mattila, J. Virvalo, T. (2000). Energy efficient motion control of a hydraulic manipulator, In Int Proc Robotics and Automation. San Francisco, USA.
[11] Merrit, H.E. (1967). Hydraulic Control Systems, John Wiley and Sons, Inc. New York, USA.
[12] Mikkola, A.M. (1997). Studies of Fatigue Damage in a Hydraulic Driven Boom System Using Virtual Prototype Simulations, PhD Thesis, Lappeenranta University of Technology, Finland.
[13] Münzer, M.E. (2003). Resolved Motion Control of Mobile Hydraulic Cranes, PhD Thesis, Aalborg University, Denmark.
[14] Nielsen, B.K. (2005). Controller Development for a Separate Meter-in Separate Meter-out Fluid Power Valve for Mobile Applications, PhD Thesis, Aalborg University, Denmark.
[15] Nikravesh, P.E. (1990). Systematic reduction of multibody equations of motion to a minimal set, Int J Nonlinear Mechanics, 25(2/3):143--151 doi:10.1016/0020-7462(90)90046-C
[16] Nikravesh, P.E. (1991). Computational Methods in Multi-body Systems, Notes, COMETT, DTH, Lyngby, Denmark.
[17] Pedersen, H.C. Nielsen, B. (2002). Resolved Motion Control of Flexible Hydraulic Manipulators, Master Thesis, Aalborg University, Denmark.
[18] Yuan, Q., Lew, J., Piyabongkarn, D. (2009). Motion control of an aerial work platform, In Proc. American Control Conference. St. Louis, MO, USA.
BibTeX:
@article{MIC-2010-4-2,
title={{Developing a Tool Point Control Scheme for a Hydraulic Crane Using Interactive Real-time Dynamic Simulation}},
author={Pedersen, Mikkel M. and Hansen, Michael R. and Ballebye, Morten},
journal={Modeling, Identification and Control},
volume={31},
number={4},
pages={133--143},
year={2010},
doi={10.4173/mic.2010.4.2},
publisher={Norwegian Society of Automatic Control}
};