“Implicit Identification of Contact Parameters in a Continuous Chain Model”
Authors: Søren E. Sørensen, Michael R. Hansen, Morten K. Ebbesen and Ole Ø. Mouritsen,Affiliation: Aalborg University and University of Agder
Reference: 2011, Vol 32, No 1, pp. 1-15.
Keywords: Contact model, Optimization methods, Experimental measurements, Multibody model
Abstract: Accurate contact modeling is of great importance in the field of dynamic chain simulations. In this paper emphasis is on contact dynamics for a time-domain simulation model of large chains guided in a closed loop track. The chain model is based on theory for unconstrained rigid multibody dynamics where contact within the chain and with the track is defined through continuous point contacts using the contact indentation and rate as means. This paper presents an implicit method to determine contact parameters of the chain model through the use of none gradient optimization methods. The set of model parameters are estimated by minimizing the residual between simulated and measured results. The parameter identification is tested on four different formulations of the Hunt-Crossly hysteresis damping factor with the aim of recognizing a superior model.
PDF (640 Kb) DOI: 10.4173/mic.2011.1.1
DOI forward links to this article:
[1] Søren Emil Sørensen, Michael R. Hansen, Morten K. Ebbesen and Ole Ø. Mouritsen (2012), doi:10.1007/s00158-011-0743-7 |
[2] Xiaogang Xiong, Ryo Kikuuwe and Motoji Yamamoto (2013), doi:10.1155/2013/320276 |
[3] Janete Alves, Nuno Peixinho, Miguel Tavares da Silva, Paulo Flores and Hamid M. Lankarani (2015), doi:10.1016/j.mechmachtheory.2014.11.020 |
[4] Charlie Mathey, Cyril Feau, Ioannis Politopoulos, David Clair, Laurent Baillet and Michel Fogli (2016), doi:10.1002/eqe.2773 |
[5] Xiaogang Xiong, Ryo Kikuuwe and Motoji Yamamoto (2013), doi:10.1115/1.4024403 |
[6] Qian Liu, Jianxun Liang and Ou Ma (2020), doi:10.1007/s11044-020-09746-w |
[1] Flores, P., Ambrosio, J., Claro, J., Lankarani, H. (2006). Dynamics of multibody systems with spherical clearance joints, Journal of Computational and Nonlinear Dynamics, 2006, 1, 240-247, 1:240--247 doi:10.1115/1.2198877
[2] Gonthier, Y., Mcphee, J., Langer, C., Piedbøeuf, J.-C. (2004). A regularized contact model with asymmetric damping and dwell-time dependent friction, Multibody System Dynamics, 2004, 11, 209-233, 11:209--233 doi:10.1023/B:MUBO.0000029392.21648.bc
[3] Herbert, R. McWhannell, D. (1977). Shape and frequency composition of pulses from an impact pair, Journal of Engineering for Industry, 99, 513-518, 1977. 99:512--518 doi:10.1115/1.3439270
[4] Hertz, H. (1882). Über die Berürung Fester Elasticher Körper, Journal für die Reine und Gewandte Mathematik, 92:156--171.
[5] Hunt, K. Crossley, F. (1975). Coefficient of restitution interpreted as damping in vibroimpact, Journal of Applied Mechanics, 42:440--445.
[6] Kwok, N., Ha, Q., Nguyen, T., Li, B., Samali, B. (2006). A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization, Sensors and Actuators A, 132:441--451 doi:10.1016/j.sna.2006.03.015
[7] Labous, L., Rosato, A.D., Dave, R.N. (1997). Measurements of collisional properties of spheres using high-speed video analysis, Physical review E, 5.5:5717--5725 doi:10.1103/PhysRevE.56.5717
[8] Lankarani, H.M. Nikravesh, P.E. (1990). A contact force model with hysteresis damping for impact analysis of multibody system, Journal of Mechanical Design, 112:369--376 doi:10.1115/1.2912617
[9] Lankarani, H.M. Nikravesh, P.E. (1994). Continuous contact force models for impact analysis in multibody systems, Nonlinear Dynamics, 5:193--207.
[10] Lederer, D., Igarashi, H., Kost, A., Honma, T. (1999). On the parameter identification and application of the jiles-atherton hysteresis model for numerical modelling of measured characteristics, IEEE Transactions on Magnetics, 3.3:1211--114 doi:10.1109/20.767167
[11] Lee, T.W. Wang, A. (1983). On the dynamics of intermittent-motion mechanisms, Journal of Mechanisms, Transmission, and Automation in design, 105:534--540.
[12] Manetsch, T. (1990). Toward efficient global optimization in large dynamic systems - the adaptive complex method, IEEE Transaction on Systems, Man, and Cybernetics, 2.1:257--261 doi:10.1109/21.47827
[13] Moreira, P., Silva, M., Flores, P. (2010). A biomechanical multibody foot model for forward dynamic analysis, In The 1st joint International Conference on Multibody System Dynamics. Lappeenranta, Finland.
[14] Pedersen, S.L. (2006). Model of contact between rollers and sprockets in chain-drive systems, Applied Mechanics, 74:489--508.
[15] Pedersen, S.L., Hansen, J.M., Ambrosio, J.A. (2004). A roller chain drive model including contact with guide-bars, Multibody System Dynamics, 12:285--301 doi:10.1023/B:MUBO.0000049131.77305.d8
[16] Press, W., Teukolsky, S., Vetterling, W., Flannery, B. (1996). Numerical Recipes in Fortran 90: The art of Parallel scientific Computation, 2. ed. Cambridge University Press.
[17] Seifried, R., Schiehlen, W., Eberhard, P. (2010). The role of the coefficient of restitution on impact problems in multi-body dynamics, Journal of Multi-body Dynamics, Part K, 224:279--306 doi:10.1243/14644193JMBD239
[18] Serban, R. Freeman, J. (2001). Identification and identifiability of unknown parameters in multibody dynamics systems, Multibody System Dynamics, 5:335--350 doi:10.1023/A:1011434711375
[19] Shi, X. Polycarpou, A. (2009). Measurement and modelling of normal contact stiffness and contact damping at the meso scale, Journal of Vibration and Acoustics, 12.1:52--60 doi:10.1016/j.jsv.2005.09.021
[20] Sondergaard, R., Chaney, K., Brennen, C.E. (1990). Measurements of solid spheres bouncing off flat plates, Journal of Applied Mechanics, 57:694--699.
[21] Sørensen, S.E., Hansen, M.R., Ebbesen, M.K., Mouritsen, O.Ø. (2010). An experimentally verified model for time domain simulation of large scale material handling chains, the 1st joint international conference on multibody system dynamics. In The 1st joint International Conference on Multibody System Dynamics. Lappeenranta, Finland.
[22] Sørensen, S.E., Hansen, M.R., Ebbesen, M.K., Mouritsen, O.Ø. (2011). Time domain simulation of large scale material handling chains using an unconstrained formulation, Journal of Multi-body Dynamics.Under revison.
[23] Ta, M.-N. Lardies, J. (2006). Identification of weak nonlinearities on damping and stiffness by continuous wavelet transform, Journal of Sound and Vibration, 293:16--37 doi:10.1016/j.jsv.2005.09.021
[24] Ursem, R.K. Vadstrup, P. (2003). Parameter identification of induction motors using differential evolution, In the Congress Evolutionary Computation. Canberra, Australia, pp. 790--796.
[25] Zhang, Y. Shaft, I. (2009). Validation of nonlinear viscoelastic contact force models for low speed impact, Journal of Applied Mechanics, 76:051002--1--051002--12 doi:10.1115/1.3112739
BibTeX:
@article{MIC-2011-1-1,
title={{Implicit Identification of Contact Parameters in a Continuous Chain Model}},
author={Sørensen, Søren E. and Hansen, Michael R. and Ebbesen, Morten K. and Mouritsen, Ole Ø.},
journal={Modeling, Identification and Control},
volume={32},
number={1},
pages={1--15},
year={2011},
doi={10.4173/mic.2011.1.1},
publisher={Norwegian Society of Automatic Control}
};