“Multiobjective Optimum Design of a 3-RRR Spherical Parallel Manipulator with Kinematic and Dynamic Dexterities”
Authors: Guanglei Wu,Affiliation: Aalborg University
Reference: 2012, Vol 33, No 3, pp. 111-121.
Keywords: Spherical parallel manipulator, multiobjective optimization, Cartesian stiffness matrix, dexterity, Generalized Inertia Ellipsoid
Abstract: This paper deals with the kinematic synthesis problem of a 3-RRR spherical parallel manipulator, based on the evaluation criteria of the kinematic, kinetostatic and dynamic performances of the manipulator. A multiobjective optimization problem is formulated to optimize the structural and geometric parameters of the spherical parallel manipulator. The proposed approach is illustrated with the optimum design of a special spherical parallel manipulator with unlimited rolling motion. The corresponding optimization problem aims to maximize the kinematic and dynamic dexterities over its regular shaped workspace.

DOI forward links to this article:
[1] Cammarata Alessandro and Sinatra Rosario (2014), doi:10.1016/j.mechmachtheory.2013.10.010 |
[2] Guanglei Wu (2014), doi:10.4173/mic.2014.1.2 |
[3] Guanglei Wu (2014), doi:10.1155/2014/296250 |
[4] Guanglei Wu, Stéphane Caro and Jiawei Wang (2015), doi:10.1016/j.mechmachtheory.2015.07.012 |
[5] Ebrahim Abedloo, Amir Molaei and Hamid D. Taghirad (2014), doi:10.1109/ICRoM.2014.6990964 |
[6] R. Khezrian, E. Abedloo, M. Farhadmanesh and S. A. A. Moosavian (2014), doi:10.1109/ICRoM.2014.6990959 |
[7] Guanglei Wu and Ping Zou (2016), doi:10.1016/j.mechmachtheory.2016.07.017 |
[8] Yanzhi Zhao, Jinglei Wang, Yachao Cao, Bowen Liang and Tieshi Zhao (2017), doi:10.1016/j.mechmachtheory.2016.10.008 |
[9] J. Brinker, B. Corves and Y. Takeda (2018), doi:10.1016/j.mechmachtheory.2017.11.029 |
[10] Abdur Rosyid, Bashar El-Khasawneh and Anas Alazzam (2018), doi:10.1017/S0263574718000152 |
[11] José-Alfredo Leal-Naranjo, Marco Ceccarelli, Christopher-René Torres-San-Miguel, Luis-Antonio Aguilar-Perez, Guillermo Urriolagoitia-Sosa and Guillermo Urriolagoitia-Calderón (2018), doi:10.1590/1679-78254044 |
[12] Jaime Gallardo-Alvarado, Ramon Rodriguez-Castro, Luciano Perez-Gonzalez and Carlos Aguilar-Najera (2018), doi:10.3390/robotics7020029 |
[13] J. J. Hernández-Gómez, I. Medina, C. R. Torres-San Miguel, A. Solís-Santomé, C. Couder-Castañeda, J. C. Ortiz-Alemán and J. I. Grageda-Arellano (2018), doi:10.1155/2018/9592623 |
[14] José-Alfredo Leal-Naranjo, Jorge-Alberto Soria-Alcaraz, Christopher-René Torres-San Miguel, Juan-Carlos Paredes-Rojas, Andrés Espinal and Horacio Rostro-González (2019), doi:10.1016/j.mechmachtheory.2019.06.023 |
[15] Andrew L. Orekhov and Nabil Simaan (2019), doi:10.1115/1.4043685 |
[16] Iliyas Tursynbek, Aibek Niyetkaliye and Almas Shintemirov (2019), doi:10.1109/COASE.2019.8843090 |
[17] Abdur Rosyid, Bashar El-Khasawneh and Anas Alazzam (2017), doi:10.5772/intechopen.71406 |
[18] Skvortsova Valeria and Popov Dmitry (2019), doi:10.1109/DCNAIR.2019.8875585 |
[19] Gleb S. Filippov, Victor A. Glazunov, Anna N. Terekhova, Aleksey B. Lastochkin, Robert A. Chernetsov and Lyubov V. Gavrilina (2020), doi:10.1007/978-3-030-39162-1_31 |
[20] Soheil Zarkandi (2020), doi:10.1177/0954406220938806 |
[21] Alejandro T. Cruz-Reyes, Manuel Arias-Montiel and Ricardo Tapia-Herrera (2021), doi:10.1007/978-3-030-75271-2_4 |
[22] Vijaykumar Kulkarni, C. V. Chandrashekara and D. Sethuram (2022), doi:10.1007/978-981-16-0550-5_66 |
[23] Jaeyong Lee, Hyungjoo Kim and Woosung Yang (2021), doi:10.3390/s21238073 |
[24] Rutupurna Choudhury and Yogesh Singh (2023), doi:10.1177/09544089231158187 |
[25] Ali Ahmadi N, Ali Kamali Eigoli and Afshin Taghvaeipour (2024), doi:10.1017/S0263574724000390 |
[26] Yanding Qin, Yueyang Shi, Longxin Wang, Hongpeng Wang and Jianda Han (2024), doi:10.1109/TMRB.2024.3387114 |
[27] Huseyin Tugcan Dinc, Thomas Hulin, Michael Rothammer, HyeonSeok Seong, Bertram Willberg, Benedikt Pleintinger, Jee-Hwan Ryu and Christian Ott (2024), doi:10.1109/Telepresence63209.2024.10841776 |
[1] Altuzarra, O., Salgado, O., Hernandez, A., Angeles, J. (2009). Multiobjective optimum design of a symmetric parallel schönflies-motion generator, ASME J. Mechanical Design, 13.3:031002 doi:10.1115/1.3066659
[2] Asada, H. (1983). A geometrical representation of manipulator dynamics and its application to arm design, ASME J. Dynamic Systems, Measurement and Control, 10.3:131--142 doi:10.1115/1.3140644
[3] Asada, H. Granito, J. (1985). Kinematic and static characterization of wrist joints and their optimal design, In IEEE International Conference on Robotics and Automation. pp. 244--250 doi:10.1109/ROBOT.1985.1087324
[4] Bai, S. (2010). Optimum design of spherical parallel manipulator for a prescribed workspace, Mechanism and Machine Theory, 4.2:200--211 doi:10.1016/j.mechmachtheory.2009.06.007
[5] Bai, S., Hansen, M.R., Andersen, T.O. (2009). Modelling of a special class of spherical parallel manipulators with Euler parameters, Robotica, 2.2:161--170 doi:10.1017/S0263574708004402
[6] Bonev, I.A. (2008). Direct kinematics of zero-torsion parallel mechanisms, In IEEE International Conference on Robotics and Automation. Pasadena, California, USA, pp. 3851--3856 doi:10.1109/ROBOT.2008.4543802
[7] Bonev, I.A. Gosselin, C.M. (2006). Analytical determination of the workspace of symmetrical spherical parallel mechanisms, IEEE Transactions on Robotics, 2.5:1011--1017 doi:10.1109/TRO.2006.878983
[8] Caro, S., Chablat, D., Ur-Rehman, R., Wenger, P. (2011). Multiobjective design optimization of 3-PRR planar parallel manipulators, In Global Product Development, pages 373--383. Springer-Verlag Berlin Heidelberg doi:10.1007/978-3-642-15973-2\_37
[9] Cavallo, E. Michelini, R.C. (2004). A robotic equipment for the guidance of a vectored thrustor, In 35th International Symposium on Robotics. Paris, France.
[10] Ceccarelli, M., Carbone, G., Ottaviano, E. (2005). Multi criteria optimum design of manipulators, In Bulletin of the Polish Academy of Technical Sciences, 5.1:9--18.
[11] Chaker, A., Mlika, A., Laribi, M.A., Romdhane, L., Zeghloul, S. (2012). Synthesis of spherical parallel manipulator for dexterous medical task, Frontiers of Mechanical Engineering, .2:150--162 doi:10.1007/s11465-012-0325-4
[12] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evolutionary Computation, .2:182--197 doi:10.1109/4235.996017
[13] Durand, S.L. Reboulet, C. (1997). Optimal design of a redundant spherical parallel manipulator, Robotica, 1.4:399--405 doi:10.1017/S0263574797000490
[14] Gosselin, C.M. Angeles, J. (1989). The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator, ASME J. Mechanisms, Transmissions, and Automation in Design, 111:202--207 doi:10.1115/1.3258984
[15] Gosselin, C.M. Angeles, J. (1991). A global performance index for the kinematic optimization of robotic manipulators, ASME J. Mechanical Design, 11.3:220--226 doi:10.1115/1.2912772
[16] Gosselin, C.M. Hamel, J.F. (1994). The Agile Eye: a high-performance three-degree-of-freedom camera-orienting device, In IEEE International Conference on Robotics and Automation. San Diego, CA, pp. 781--786 doi:10.1109/ROBOT.1994.351393
[17] Hao, F. Merlet, J.-P. (2005). Multi-criteria optimal design of parallel manipulators based on interval analysis, Mechanism and Machine Theory, 4.2:157--171 doi:10.1016/j.mechmachtheory.2004.07.002
[18] Hay, A.M. Snyman, J.A. (2004). Methodologies for the optimal design of parallel manipulators, Inter. J. Numerical Methods in Engineering, 5.11:131--152 doi:10.1002/nme.871
[19] Hibbeler, R.C. (1997). Mechanics of Materials, Prentice Hall.
[20] Huang, T., Gosselin, C.M., Whitehouse, D.J., Chetwynd, D.G. (2003). Analytic approach for optimal design of a type of spherical parallel manipulators using dexterous performance indices, IMechE. J. Mechan. Eng. Sci., 21.4:447--455 doi:10.1243/095440603321509720
[21] Kong, K. Gosselin, C.M. (2004). Type synthesis of three-degree-of-freedom spherical parallel manipulators, Inter. J. Robotics Research, 2.3:237--245 doi:10.1177/0278364904041562
[22] Krefft, M. Hesselbach, J. (2005). Elastodynamic optimization of parallel kinematics, In Proceedings of the IEEE International Conference on Automation Science and Engineering. Edmonton, AB, Canada, pp. 357--362 doi:10.1109/COASE.2005.1506795
[23] Li, T. Payandeh, S. (2002). Design of spherical parallel mechanisms for application to laparoscopic surgery, Robotica, 2.2:133--138 doi:10.1017/S0263574701003873
[24] Liu, X.J., Jin, Z.L., Gao, F. (2000). Optimum design of 3-dof spherical parallel manipulators with respect to the conditioning and stiffness indices, Mechanism and Machine Theory, 35(9):1257--1267 doi:10.1016/S0094-114X(99)00072-5
[25] Lou, Y., Liu, G., Chen, N., Li, Z. (2005). Optimal design of parallel manipulators for maximum effective regular workspace, In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Alberta, pp. 795--800 doi:10.1109/IROS.2005.1545144
[26] Maxon. (2012). Maxon Motor and Gearhead products catalog, http://www.maxonmotor.com/maxon/view/catalog/.
[27] Merlet, J.-P. (2006). Jacobian, manipulability, condition number, and accuracy of parallel robots, ASME J. Mechanical Design, 12.1:199--206 doi:10.1115/1.2121740
[28] Merlet, J.-P. (2006). Parallel Robots, Kluwer, Norwell.
[29] Pashkevich, A., Chablat, D., Wenger, P. (2009). Stiffness analysis of overconstrained parallel manipulators, Mechanism and Machine Theory, 4.5:966--982 doi:10.1016/j.mechmachtheory.2008.05.017
[30] Stamper, R.E., Tsai, L.-W., Walsh, G.C. (1997). Optimization of a three-dof translational platform for well-conditioned workspace, In Proceedings of the IEEE International Conference on Robotics and Automation. Albuquerque, NM, pp.s 3250--3255 doi:10.1109/ROBOT.1997.606784
[31] Stock, M. Miller, K. (2003). Optimal kinematic design of spatial parallel manipulators: Application of linear delta robot, ASME J. Mechanical Design, 12.2:292--301 doi:10.1115/1.1563632
[32] Tsai, L.-W. (1998). The Jacobian analysis of parallel manipulators using reciprocal screws, In J.Lenarcibrevec and M.L. Husty, editors, Advances in Robot Kinematics: Analysis and Control, pp. 327--336. Kluwer Academic Publishers.
BibTeX:
@article{MIC-2012-3-3,
title={{Multiobjective Optimum Design of a 3-RRR Spherical Parallel Manipulator with Kinematic and Dynamic Dexterities}},
author={Wu, Guanglei},
journal={Modeling, Identification and Control},
volume={33},
number={3},
pages={111--121},
year={2012},
doi={10.4173/mic.2012.3.3},
publisher={Norwegian Society of Automatic Control}
};