“The Good Gain method for simple experimental tuning of PI controllers”
Authors: Finn Haugen,Affiliation: Telemark University College
Reference: 2012, Vol 33, No 4, pp. 141-152.
Keywords: PI controller, tuning, simple, closed-loop, Ziegler-Nichols, Good Gain, performance, IAE, stability robustness, gain margin, phase margin
Abstract: A novel experimental method -- here denoted the Good Gain method -- for tuning PI controllers is proposed. The method can be regarded as an alternative to the famous Ziegler-Nichols´ Ultimate Gain method. The approach taken resembles the Ziegler-Nichols´ method as it is based on experiments with the closed loop system with proportional control. However, the method does not require severe process upset during the tuning like sustained oscillations. Only well-damped responses are assumed. Furthermore, in the present study it is demonstrated that the approach typically gives better stability robustness comparing with the Ziegler-Nichols´ method. The method is relatively simple to use which is beneficial for the user. A theoretical rationale based on second order dynamics is given.
PDF (945 Kb) DOI: 10.4173/mic.2012.4.3
DOI forward links to this article:
[1] Finn Haugen, Rune Bakke and Bernt Lie (2013), doi:10.4173/mic.2013.3.1 |
[2] Finn Haugen, Bernt Lie, F. Haugen, R. Bakke and B. Lie (2013), doi:10.4173/mic.2013.2.4 |
[3] Finn Haugen, Rune Bakke and Bernt Lie (2014), doi:10.1155/2014/572621 |
[4] Finn Haugen and Kjell Erik Wolden (2013), doi:10.3182/20130828-3-UK-2039.00029 |
[5] José Antonio Barraza Madrigal, Eladio Cardiel, Pablo Rogeli, Lorenzo Leija Salas and Roberto Muñoz Guerrero (2016), doi:10.1016/j.medengphy.2016.04.011 |
[6] Christer Dalen and David Di Ruscio (2016), doi:10.4173/mic.2016.4.2 |
[7] L. A. Contreras-Rodriguez, R. Munoz-Guerrero and J. A. Barraza-Madrigal (2017), doi:10.1109/ICEEE.2017.8108879 |
[8] Yuanyuan Wang, Shuhong Chai and Hung Duc Nguyen (2019), doi:10.1016/j.apor.2019.01.030 |
[9] PATIL NUPOOR and D. R. PATIL (2018), doi:10.26634/jee.12.1.14329 |
[10] Yufei Wang, Yuanyuan Wang and Hung Duc Nguyen (2019), doi:10.1109/CCDC.2019.8833314 |
[11] Jiangbei Wang, Yanqiong Fei and Weidong Chen (2019), doi:10.1089/soro.2019.0023 |
[12] Vassilis Stavrakas and Alexandros Flamos (2020), doi:10.1016/j.enconman.2019.112339 |
[13] Annelies Vandermeulen, Tijs Van Oevelen, Bram van der Heijde and Lieve Helsen (2020), doi:10.1016/j.energy.2020.117650 |
[14] Jiangbei Wang and Yanqiong Fei (2021), doi:10.1007/978-3-030-43703-9_17 |
[15] Urvashi Pande and Yogesh V. Hote (2020), doi:10.1109/ICSTCEE49637.2020.9276776 |
[16] Gordon Connor, Catherine E. Jones and Stephen J. Finney (2014), doi:10.1049/iet-gtd.2013.0323 |
[17] Bahaddin M. Abubakr, Osama A. Abolaeha and Alamin A. Hameda (2020), doi:10.46300/91015.2020.14.8 |
[18] A. A. M. Zahir, S. S. N. Alhady, W. A. F. W. Othman, A. A. A. Wahab and M. F. Ahmad (2022), doi:10.1007/978-981-33-4597-3_57 |
[19] Mihaly Katona and Peter Kiss (2021), doi:10.33894/mtk-2021.15.09 |
[20] Murat Sahin (2021), doi:10.5772/intechopen.98810 |
[21] Asfaw Gezae Daful (2018), doi:10.1109/ICASET.2018.8376915 |
[22] Shivalingaswamy G D, Kothaiandal C and R Selvamathi (2022), doi:10.1109/ICDCECE53908.2022.9793316 |
[23] Lauro Armando Contreras Rodriguez, Jose Antonio Barraza, Eladio Cardiel and Pablo Rogelio Hernandez (2022), doi:10.1016/j.medengphy.2022.103852 |
[24] Jose Antonio Barraza Madrigal, Lauro Armando Contreras Rodriguez, Eladio Cardiel Perez, Pablo Rogelio Hernandez Rodriguez and Humberto Sossa (2023), doi:10.1016/j.bspc.2023.104938 |
[25] Zhou Fang, Sarah Woodford, Damith Senanayake and David Ackland (2023), doi:10.3390/s23146535 |
[26] Azavitra Zainal, Norhaliza Abdul Wahab, Mohd Ismail Yusof and Mashitah Che Razali (2024), doi:10.1007/978-981-99-7243-2_1 |
[27] T. Vo, J. Ravishankar, H. I. Nurdin and J. Fletcher (2015), doi:10.1260/0309-524X.39.4.479 |
[28] Yuxuan Wang, Shaoke Yuan, Zihan Pu, Jiangbei Wang and Yanqiong Fei (2024), doi:10.1109/IROS58592.2024.10802692 |
[1] Haugen, F. (2010). Basic Dynamics and Control, TechTeach.
[2] Haugen, F. (2010). Comparing PI Tuning Methods in a Real Benchmark Temperature Control System, Modeling, Identification and Control, 31:79--91 doi:10.4173/mic.2010.3.1
[3] Haugen, F. (2013). Reguleringsteknikk, in Norwegian. Akademika.
[4] Lee, J., Cho, W., Edgar, T. (1990). An Improved Technique for PID Controller Tuning from Closed-Loop Tests, Modeling, Identification and Control, 36:1891--1895 doi:10.1002/aic.690361212
[5] Seborg, D., Edgar, T., Mellichamp, D. (2004). Process Dynamics and Control, John Wiley and Sons.
[6] Skogestad, S. (2003). Simple analytic rules for model reduction and PID controller tuning, Journal of Process Control, 14:465 doi:10.1016/S0959-1524(02)00062-8
[7] Skogestad, S. (2004). Simple analytic rules for model reduction and PID controller tuning, Modeling, Identification and Control, 2.2:85--120 doi:10.4173/mic.2004.2.2
[8] Yuwana, M. Seborg, D. (1982). New Method for On-Line Controller Tuning, AlChE Journal, 2.3:434--440 doi:10.1002/aic.690280311
[9] Ziegler, J. Nichols, N. (1942). Optimum Settings for Automatic Controllers, Trans. ASME, 6.3:759--768 doi:10.1115/1.2899060
BibTeX:
@article{MIC-2012-4-3,
title={{The Good Gain method for simple experimental tuning of PI controllers}},
author={Haugen, Finn},
journal={Modeling, Identification and Control},
volume={33},
number={4},
pages={141--152},
year={2012},
doi={10.4173/mic.2012.4.3},
publisher={Norwegian Society of Automatic Control}
};