“On Implementation of the Preisach Model: Identification and Inversion for Hysteresis Compensation”

Authors: Jon Åge Stakvik, Michael R.P. Ragazzon, Arnfinn A. Eielsen and Jan T. Gravdahl,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 2015, Vol 36, No 3, pp. 133-142.

Keywords: Hysteresis, Preisach, Identification, Inversion

Abstract: A challenge for precise positioning in nanopositioning using smart materials is hysteresis, limiting positioning accuracy. The Preisach model, based on the delayed relay operator for hysteresis modelling, is introduced. The model is identified from experimental data with an input function ensuring information for all input levels. This paper presents implementational issues with respect to hysteresis compensation using the Preisach model, showing the procedure to follow, avoiding pitfalls in both identification and inversion. Issues due to the discrete nature of the Preisach model are discussed, and a specific linear interpolation method is tested experimentally, showing effective avoidance of excitation of vibrational dynamics in the smart material. Experimental results of hysteresis compensation are presented, showing an approximate error of 5% between the reference and measured displacement. Consequences of an insufficient discretization level and a high frequency reference signal are illustrated, showing significant deterioration of the hysteresis compensation performance.

PDF PDF (1322 Kb)        DOI: 10.4173/mic.2015.3.1

DOI forward links to this article:
[1] Michael R.P. Ragazzon, Marialena Vagia and J. Tommy Gravdahl (2016), doi:10.1016/j.ifacol.2016.10.667
[2] Mehdi Jokar, Moosa Ayati, Aghil Yousefi-Koma and Hamid Basaeri (2017), doi:10.1177/1045389X17698589
[3] Michael R.P. Ragazzon, J. Tommy Gravdahl and Marialena Vagia (2017), doi:10.1016/j.mechatronics.2017.09.011
[4] Shingo Ito, Daniel Neyer, Juergen Steininger and Georg Schitter (2017), doi:10.1016/j.ifacol.2017.08.1156
[5] Fernando Carneiro, Paulo Abreu and Maria Restivo (2018), doi:10.3390/s18051631
[6] Leonel Paredes-Madrid, Arnaldo Matute, Andrés F. Cruz-Pacheco, Carlos A. Parra Vargas and Elkin Iván Gutiérrez Veláquez (2018), doi:10.15446/dyna.v85n205.66432
[7] Zhi Li, Jinjun Shan and Ulrich Gabbert (2018), doi:10.1109/TIE.2018.2807413
[8] Mojtaba Farrokh (2018), doi:10.1061/(ASCE)EM.1943-7889.0001509
[9] Alireza Habibnejad Korayem, Mitra Taghizadeh and Fatemeh Emadi (2018), doi:10.1051/epjap/2018180071
[10] K. P. Ashwin and A. Ghosal (2018), doi:10.1115/1.4041660
[11] Amelia Ahmad Khalili, Zaharuddin Mohamed and Mohd Ariffanan Mohd Basri (2019), doi:10.1007/s00542-019-04294-6
[12] Markus Riepold, Semir Maslo, Ge Han, Christian Henke and Ansgar Trächtler (2019), doi:10.21595/vp.2019.20565
[13] Potnpimon Chayratsami and Gregory L. Plett (2018), doi:10.1109/ICCSCE.2018.8685026
[14] Michael R. P. Ragazzon, Jan Tommy Gravdahl and Kristin Y. Pettersen (2019), doi:10.1109/TCST.2018.2847644
[15] Dan Wang, Yaoyao Wang, Yonghua Lu, Bai Chen, Linxiang Wang and Hongtao Wu (2019), doi:10.1109/ACCESS.2019.2949252
[16] Pornpimon Chayratsami and Gregory L. Plett (2019), doi:10.1109/CCTA.2019.8920524
[17] Xin Li, Dohyung Kim, Sabine M. Neumayer, Mahshid Ahmadi and Sergei V. Kalinin (2020), doi:10.1109/ACCESS.2020.2983364
[18] DongWook Kim and Yong-Lae Park (2018), doi:10.1109/IROS.2018.8593440
[19] Rui Xu, Wei Pan, Zhongshi Wang and Dapeng Tian (2020), doi:10.1007/s12541-020-00423-8
[20] Chen Yang, Nicolas Verbeek, Fangzhou Xia, Yi Wang and Kamal Youcef-Toumi (2021), doi:10.1109/TIE.2020.2977567
[21] Tao Liu, Hao Li, Tao He, Cunzheng Fan, Zhijun Yan, Deming Liu and Qizhen Sun (2021), doi:10.29026/oea.2021.200037
[22] Kai Tian, Zhigang Liu, Tao Jing and Yu Zhu (2021), doi:10.1063/5.0053858
[23] Yiwei Tang, Xin Sun, Qi He, Xi Xiao and Weihua Wang (2021), doi:10.23919/ICEMS52562.2021.9634521
[24] Chen Yang, Yi Wang and Kamal Youcef-Toumi (2022), doi:10.1109/TIE.2021.3080221
[25] Pornpimon Chayratsami and Gregory L. Plett (2020), doi:10.1109/ICCA51439.2020.9264350
[26] Linlin Nie, Yiling Luo, Wei Gao and Miaolei Zhou (2022), doi:10.1007/s11071-022-07324-7
[27] Ivan Glavini , Imamul Muttakin, Shereen Abouelazayem, Artem Blishchik, Frank Stefani, Sven Eckert, Manuchehr Soleimani, Iheb Saidani, Jaroslav Hlava, Sa a Kenjere and Thomas Wondrak (2022), doi:10.3390/s22062195
[28] Tariq Bahwini, Yongmin Zhong, Chengfan Gu and Kup-Sze Choi (2022), doi:10.1007/s12008-022-00861-w
[29] Massimiliano Amato, Luca Ghezzi, Luigi Piegari and Sergio Toscani (2022), doi:10.1109/I2MTC48687.2022.9806703
[30] Ayad G. Baziyad, Adnan S. Nouh, Irfan Ahmad and Abdulaziz Alkuhayli (2022), doi:10.3390/act11080217
[31] Maciej a cki and Carlos Rossa (2022), doi:10.1007/978-3-031-22061-6_28
[32] Disheng Xie, Yujie Su, Xiaolu Li, Jingxun Chen, Xiangqian Shi, Dezhi Liang, Joanne Yip, Jianbin Liu, Zheng Li and Raymond Kai yu Tong (2023), doi:10.1002/aisy.202200370
[33] Yong Sang, Lianjie Liao, Lianlong Guo, Luming Jiang and Jiakuo Liu (2024), doi:10.1088/1361-6501/ad36db
[34] Angela Pena, Edwin L. Alvarez, Diana M. Ayala Valderrama, Carlos Palacio, Yosmely Bermudez and Leonel Paredes-Madrid (2024), doi:10.3390/s24206592
References:
[1] AlJanaideh, M., Rakheja, S., and Su, C.-Y. (2011). An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control, IEEE/ASME Transactions on Mechatronics. 16(4):734--744. doi:10.1109/TMECH.2010.2052366
[2] Croft, D., Shed, G., and Devasia, S. (2001). Creep, hysteresis, and vibration compensation for piezoactuators: Atomic force microscopy application, Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME. 123(1):35--43. doi:10.1115/1.1341197
[3] Devasia, S., Eleftheriou, E., and Moheimani, S. (2007). A survey of control issues in nanopositioning, IEEE Transactions on Control Systems Technology. 15:802--823. doi:10.1109/TCST.2007.903345
[4] Eielsen, A.A. (2012). Topics in Control of Nanopositioning Devices, Ph.D. thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics.
[5] Eielsen, A.A., Gravdahl, J.T., and Pettersen, K.Y. (2012). Adaptive feed-forward hysteresis compensation for piezoelectric actuators, Review of Scientific Instruments. 83(8). doi:10.1063/1.4739923
[6] Esbrook, A., Tan, X., and Khalil, H. (2013). Control of systems with hysteresis via servocompensation and its application to nanopositioning, IEEE Transactions on Control Systems Technology. 21(3):725--738. doi:10.1109/TCST.2012.2192734
[7] Galinaitis, W., Joseph, D., and Rogers, R. (2001). Parameter identification for preisach operators with singular measures, Physica B: Condensed Matter. 306(1-4):149--154. doi:10.1016/S0921-4526(01)00995-4
[8] Hughes, D. and Wen, J. (1997). Preisach modeling of piezoceramic and shape memory alloy hysteresis, Smart Materials and Structures. 6(3):287--300. doi:10.1088/0964-1726/6/3/007
[9] Ismail, M., Ikhouane, F., and Rodellar, J. (2009). The hysteresis Bouc-Wen model, a survey, Archives of Computational Methods in Engineering. 16(2):161--188. doi:10.1007/s11831-009-9031-8
[10] Iyer, R. and Shirley, M. (2004). Hysteresis parameter identification with limited experimental data, IEEE Transactions on Magnetics. 40(5):3227--3239. doi:10.1109/TMAG.2004.833427
[11] Iyer, R. and Tan, X. (2009). Control of hysteretic systems through inverse compensation, Control Systems, IEEE. 29(1):83--99. doi:10.1109/MCS.2008.930924
[12] Iyer, R., Tan, X., and Krishnaprasad, P. (2005). Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators, IEEE Transactions on Automatic Control. 50(6):798--810. doi:10.1109/TAC.2005.849205
[13] Jiles, D. and Atherton, D. (1986). Theory of ferromagnetic hysteresis, Journal of Magnetism and Magnetic Materials. 61(1-2):48--60. doi:10.1016/0304-8853(86)90066-1
[14] Kuhnen, K. (2003). Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach, European Journal of Control. 9(4):407--418. doi:10.3166/ejc.9.407-418
[15] Leang, K. and Devasia, S. (2006). Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes, Mechatronics. 16(3-4):141--158. doi:10.1016/j.mechatronics.2005.11.006
[16] Macki, J.W., Nistri, P., and Zecca, P. (1993). Mathematical models for hysteresis, SIAM Review. 35(1):94--123. doi:10.1137/1035005
[17] Mayergoyz, I. (2003). Mathematical Models of Hysteresis and their Applications, Academic Press.
[18] Moheimani, S. and Goodwin, G.C. (2001). Guest editorial introduction to the special issue on dynamics and control of smart structures, Control Systems Technology, IEEE Transactions on. 9(1):3--4. doi:10.1109/TCST.2001.896740
[19] Ragazzon, M. R.P., Eielsen, A.A., and Gravdahl, J.T. (2014). Hinf reduced order control for nanopositioning: Numerical implementability, In 19th World Congress of the International Federation of Automatic Control. Cape Town, South Africa, pages 6862--6869. doi:10.3182/20140824-6-ZA-1003.00501
[20] Riccardi, L., Naso, D., Janocha, H., and Turchiano, B. (2012). A precise positioning actuator based on feedback-controlled magnetic shape memory alloys, Mechatronics. 22(5):568--576. doi:10.1016/j.mechatronics.2011.12.004
[21] Rosenbaum, S., Ruderman, M., Ströhla, T., and Bertram, T. (2010). Use of Jiles-Atherton and Preisach hysteresis models for inverse feed-forward control, IEEE Transactions on Magnetics. 46(12):3984--3989. doi:10.1109/TMAG.2010.2071391
[22] Stakvik, J.Aa. (2014). Identification, Inversion and Implementaion of the Preisach Hysteresis Model in Nanopositioning, Master's thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics.
[23] Tan, X. (2002). Control of smart actuators, Ph.D. thesis, University of Maryland.
[24] Tan, X. and Baras, J. (2004). Modeling and control of hysteresis in magnetostrictive actuators, Automatica. 40(9):1469--1480. doi:10.1016/j.automatica.2004.04.006
[25] Tan, X. and Baras, J. (2005). Adaptive identification and control of hysteresis in smart materials, IEEE Transactions on Automatic Control. 50(6):827--839. doi:10.1109/TAC.2005.849215
[26] Tan, X. and Bennani, O. (2008). Fast inverse compensation of Preisach-type hysteresis operators using field-programmable gate arrays, In American Control Conference, 2008. Seattle, WA, pages 2365--2370. doi:10.1109/ACC.2008.4586845
[27] Tan, X., Iyer, R., and Krishnaprasad, P. (2001). Control of hysteresis: Theory and experimental results, In SPIE's 8th Annual International Symposium on Smart Structures and Materials, volume 4326. International Society for Optics and Photonics, Newport Beach, CA, pages 101--112. doi:10.1117/12.436463
[28] Zhao, X. and Tan, Y. (2006). Neural network based identification of Preisach-type hysteresis in piezoelectric actuator using hysteretic operator, Sensors and Actuators, A: Physical. 126(2):306--311. doi:10.1016/j.sna.2005.10.023


BibTeX:
@article{MIC-2015-3-1,
  title={{On Implementation of the Preisach Model: Identification and Inversion for Hysteresis Compensation}},
  author={Stakvik, Jon Åge and Ragazzon, Michael R.P. and Eielsen, Arnfinn A. and Gravdahl, Jan T.},
  journal={Modeling, Identification and Control},
  volume={36},
  number={3},
  pages={133--142},
  year={2015},
  doi={10.4173/mic.2015.3.1},
  publisher={Norwegian Society of Automatic Control}
};