“Experimental System Identification and Black Box Modeling of Hydraulic Directional Control Valve”

Authors: Sondre Sanden Tørdal, Andreas Klausen and Morten K. Bak,
Affiliation: University of Agder
Reference: 2015, Vol 36, No 4, pp. 225-235.

Keywords: Directional control valve, system identification, black box modeling, Brevini HPV41

Abstract: Directional control valves play a large role in most hydraulic systems. When modeling the hydraulic systems, it is important that both the steady state and dynamic characteristics of the valves are modeled correctly to reproduce the dynamic characteristics of the entire system. In this paper, a proportional valve (Brevini HPV 41) is investigated to identify its dynamic and steady state characteristics. The steady state characteristics are identified by experimental flow curves. The dynamics are determined through frequency response analysis and identified using several transfer functions. The paper also presents a simulation model of the valve describing both steady state and dynamic characteristics. The simulation results are verified through several experiments.

PDF PDF (721 Kb)        DOI: 10.4173/mic.2015.4.3

DOI forward links to this article:
[1] Karol Bogdanski and Matthew C Best (2017), doi:10.1177/0954407017692219
[2] Dan Wang and Changqing Bai (2017), doi:10.1115/1.4037946
[3] Haobin Jiang, Huan Tian and Yiding Hua (2019), doi:10.1177/1687814019829337
[4] Anon Mungwongsa, Khwantri Saengprachatanarug and Thana Radpukdee (2018), doi:10.1109/WPMC.2018.8713139
[5] Paolo Tamburrano, Andrew R. Plummer, Elia Distaso and Riccardo Amirante (2019), doi:10.1115/1.4041063
[6] Philipp Pasolli and Michael Ruderman (2018), doi:10.1109/IECON.2018.8591572
[7] Mingjiang Shi, Shun Guo, Lu Jiang and Zhiqiang Huang (2019), doi:10.1109/ACCESS.2019.2950703
[8] Oscar Bautista Gonzalez and Daniel Ronnow (2024), doi:10.3390/pr12040693
References:
[1] Amirante, R., Catalano, L.A., Poloni, C., and Tamburrano, P. (2013). Fluid-dynamic design optimization of hydraulic proportional directional valves, Engineering Optimization. (ahead-of-print):1--20. doi:10.1080/0305215X.2013.836638
[2] Bak, M.K. and Hansen, M.R. (2012). Modeling, performance testing and parameter identification of pressure compensated proportional directional control valves, The 7th FPNI PhD Symposium on Fluid Power. doi:10.4173/mic.2013.4.1
[3] Brevini Fluid Power. (2012). Proportional Directional Valves HPV41 HPV77, Technical report.
[4] BS. (2009). Hydraulic fluid power — Electrically modulated hydraulic control valves, BS ISO 10770-1:2009, Technical report, BRITISH STANDARD.
[5] Byrd, R.H., Hribar, M.E., and Nocedal, J. (1999). An Interior Point Algorithm for Large-Scale Nonlinear Programming, SIAM Journal on Optimization, SIAM Journal on Optimization. 9(4):877--900. doi:10.1137/S1052623497325107
[6] Dasgupta, K. and Murrenhoff, H. (2011). Modelling and dynamics of a servo-valve controlled hydraulic motor by bondgraph, Mechanism and Machine Theory. 46(7):1016--1035. doi:10.1016/j.mechmachtheory.2010.11.006
[7] Eryilmaz, B. and Wilson, B.H. (2006). Unified modeling and analysis of a proportional valve, Journal of the Franklin Institue. 343:48--68. doi:10.1016/j.jfranklin.2005.07.001
[8] Garnier, H., Mensler, M., and Richard, A. (2003). Continuous-time Model Identification From Sampled Data: Implementation Issues and Performance Evaluation, International Journal of Control. 76(13):1337--1357. doi:10.1080/0020717031000149636
[9] Ljung, L. (2009). Experiments With Identification of Continuous-Time Models, IFAC Symposium on System Identification. 15. doi:10.3182/20090706-3-FR-2004.00195
[10] NI. (2009). DAQ M Series NI USB-621x User Manual, 371931F-01, Technical report, National Instruments.
[11] Niksefat, N. and Sepehri, N. (1999). Robust force controller design for an electrohydraulic actuator based on nonlinear model, Robotics and Automation. 1:200--206. doi:10.1109/ROBOT.1999.769967
[12] Nise, N.S. (2011). Control Systems Engineering 6th Edition, Wiley.
[13] Parker. (2010). Measurement, Control, Regulation and Automation, Catalogue 4083-2/UK, Technical report, Parker.
[14] Posa, A., Oresta, P., and Lippolis, A. (2013). Analysis of a directional hydraulic valve by a Direct Numerical Simulation using an immersed-boundary method, Energy conversion and Management. 65:497--506. doi:10.1016/j.enconman.2012.07.012
[15] Tordal, S.S. and Klausen, A. (2013). Dynamiske karakteristikker av Brevini HPV41 med åpen og lukket sløyferegulering, Bachelor's thesis. Master's thesis, University of Agder, Grimstad, Norway.
[16] Valdes, J.R., Miana, M.J., Nunes, J.L., and Putz, T. (2008). Reduced order model for estimation of fluid flow and flow forces in hydraulic proportional valves, Energy Conversion and Management. 49(6):1517--1529. doi:10.1016/j.enconman.2007.12.010
[17] Xu, B., Ding, R., Zhang, J., and Su, Q. (2014). Modeling and dynamic characteristics analysis on a three-stage fast-response and large-flow directional valve, Energy Conversion and Management. 79:187--199. doi:10.1016/j.enconman.2013.12.013
[18] Young, P.C. and Jakeman, A.J. (1980). Refined instrumental variable methods of time-series analysis: Part III, extensions, International Journal of Control. 31:741--764. doi:10.1080/00207178008961080


BibTeX:
@article{MIC-2015-4-3,
  title={{Experimental System Identification and Black Box Modeling of Hydraulic Directional Control Valve}},
  author={Tørdal, Sondre Sanden and Klausen, Andreas and Bak, Morten K.},
  journal={Modeling, Identification and Control},
  volume={36},
  number={4},
  pages={225--235},
  year={2015},
  doi={10.4173/mic.2015.4.3},
  publisher={Norwegian Society of Automatic Control}
};