“Tuning PD and PID Controllers for Double Integrating Plus Time Delay Systems”

Authors: David Di Ruscio and Christer Dalen,
Affiliation: University of South-Eastern Norway
Reference: 2017, Vol 38, No 2, pp. 95-110.

Keywords: PD and PID controllers, tuning, double integrating system, time delay, maximum time delay error, relative time-delay margin, frequency analysis, robustness, performance

Abstract: An existing method for tuning a PI controller for an integrating plus time delay plant are extended to be used for the design of a PD controller for a double integrating plus time delay plant. The PD controller is extended with integral action and an ideal PID controller is suggested in order to achieve optimality of the closed loop responses. Furthermore, some analytical results concerning the proposed PD and PID controller algorithm regarding the relative time-delay margin are worked out and presented. The algorithm and an existing method are successfully compared against each other on some examples, e.g. the planar movement control of a mariner vessel.

PDF PDF (1629 Kb)        DOI: 10.4173/mic.2017.2.4

DOI forward links to this article:
[1] Christer Dalen and David Di Ruscio (2017), doi:10.4173/mic.2017.4.3
[2] Christer Dalen and David Di Ruscio (2018), doi:10.4173/mic.2018.1.4
[3] K. Kanika, R. Muniraj and M. Sivapalanirajan (2018), doi:10.1109/ICISC.2018.8399098
[4] Christer Dalen and David Di Ruscio (2018), doi:10.4173/mic.2018.4.4
[5] Christer Dalen and David Di Ruscio (2019), doi:10.4173/mic.2019.4.2
[6] Deepak Kumar, Pulakraj Aryan and G. Lloyds Raja (2022), doi:10.1002/cjce.24355
[7] Mikulas Huba and Damir Vrancic (2022), doi:10.3390/s22103753
References:
[1] Aastrom, K. and Haegglund, T. (1995). Aastrom, K, and Haegglund, T. PID Controllers: Theory, Design, and Tuning. Instrument Society of America. .
[2] DiRuscio, D. (2010). DiRuscio, D, On Tuning PI Controllers for Integrating Plus Time Delay Systems. Modeling, Identification and Control. 31(4):145--164. doi:10.4173/mic.2010.4.3
[3] DiRuscio, D. (2012). DiRuscio, D, Pi controller tuning based on integrating plus time delay models: Performance optimal tuning. 2012. In Proceedings of the IASTED Control and Applications Conference. Crete Greece June 18-21. .
[4] Fossen, T.I. and Perez, T. (0). Fossen, T, I. and Perez, T. Marine systems simulator (mss). (2004). http://www.marinecontrol.org, .
[5] Grimholt, C. and Skogestad, S. (2012). Grimholt, C, and Skogestad, S. Optimal pi-control and verification of the simc tuning rule. IFAC Proceedings Volumes. 45(3):11 -- 22. http://www.sciencedirect.com/science/article/pii/S1474667016309934, doi:http://dx.doi.org/10.3182/20120328-3-IT-3014.00003
[6] Grimholt, C. and Skogestad, S. (2013). Grimholt, C, and Skogestad, S. 11th ifac international symposium on dynamics and control of process systems optimal pid-control on first order plus time delay systems & verification of the simc rules. IFAC Proceedings Volumes. 46(32):265 -- 270. http://www.sciencedirect.com/science/article/pii/S1474667015382689, doi:http://dx.doi.org/10.3182/20131218-3-IN-2045.00122
[7] Grimholt, C. and Skogestad, S. (2016). Grimholt, C, and Skogestad, S. Optimal PID control of double integrating processes. IFAC-PapersOnLine, 2016, 49(7):127 -- 132. 11th IFAC Symposium on Dynamics and Control of Process Systems Including Biosystems DYCOPS-CAB 2016Trondheim, Norway, 6—8 June. doi:http://dx.doi.org/10.1016/j.ifacol.2016.07.228
[8] Grimholt, C. and Skogestad, S. (2016). Grimholt, C, and Skogestad, S. Optimization of fixed-order controllers using exact gradients. 2016. http://folk.ntnu.no/skoge/publications/2016/grimholt-jpc-pid-exact-gradient/main.pdf, Unpublished. .
[9] Gustafsson, T. (1996). Gustafsson, T, On the design and implementation of a rotary crane controller. European Journal of Control. 2(3):166 -- 175. https://www.diva-portal.org/smash/get/diva2:988982/FULLTEXT01.pdf. .
[10] Hughes, P. (1986). Hughes, P, Spacecraft attitude dynamics. J. Wiley. .
[11] MATLAB. (2016). MATLAB, version 9.1.0.441655 (R2016b). The MathWorks Inc., Natick, Massachusetts,USA. Control System Toolbox,Version 9.3. Optimization Toolbox, Version 6.2. .
[12] Schei, T.S. (1996). Schei, T, S. Wave disturbance filtering in dynamic positioning systems. Modeling, Identification and Control. 17(2):87--96. doi:10.4173/mic.1996.2.2
[13] Skjetne, R., Smogeli, y.N., and Fossen, T.I. (2004). Skjetne, R, , Smogeli, y.N., and Fossen, T.I. A Nonlinear Ship Manoeuvering Model: Identification and adaptive control with experiments for a model ship. Modeling, Identification and Control. 25(1):3--27. doi:10.4173/mic.2004.1.1
[14] Skogestad, S. (2003). Skogestad, S, Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control. 13(13):291--309. doi:10.1016/S0959-1524(02)00062-8
[15] Skogestad, S. (2004). Skogestad, S, Simple analytic rules for model reduction and PID controller tuning. Modeling, Identification and Control. 25(2):85--120. doi:10.4173/mic.2004.2.2
[16] Tyreus, B.D. and Luyben, W.L. (1992). Tyreus, B, D. and Luyben, W.L. Tuning PI Controllers for Integrator/Dead Time Processes. Ind. Eng. Chem.. 31(31):2625--2628. .
[17] Ziegler, J. and Nichols, N.B. (1942). Ziegler, J, and Nichols, N.B. Optimum settings for automatic controllers. Trans. of the A.S.M.E.. 64(64):759--768. .


BibTeX:
@article{MIC-2017-2-4,
  title={{Tuning PD and PID Controllers for Double Integrating Plus Time Delay Systems}},
  author={Di Ruscio, David and Dalen, Christer},
  journal={Modeling, Identification and Control},
  volume={38},
  number={2},
  pages={95--110},
  year={2017},
  doi={10.4173/mic.2017.2.4},
  publisher={Norwegian Society of Automatic Control}
};