“Downhole Temperature Modeling for Non-Newtonian Fluids in ERD Wells”

Authors: Dan Sui and Vebjørn Haraldstad Langåker,
Affiliation: University of Stavanger
Reference: 2018, Vol 39, No 2, pp. 131-149.

Keywords: Temperature model, non-Newtonian fluids, extended reach drilling

Abstract: Having precise information of fluids' temperatures is a critical process during planning of drilling operations, especially for extended reach drilling (ERD). The objective of this paper is to develop an accurate temperature model that can precisely calculate wellbore temperature distributions. An established semi-transient temperature model for vertical wellbores is extended and improved to include deviated wellbores and more realistic scenarios using non-Newtonian fluids. The temperature model is derived based on an energy balance between the formation and the wellbore. Heat transfer is considered steady-state in the wellbore and transient in the formation through the utilization of a formation cooling effect. In this paper, the energy balance is enhanced by implementing heat generation from the drill bit friction and contact friction force caused by drillpipe rotation. A non-linear geothermal gradient as a function of wellbore inclination, is also introduced to extend the model to deviated wellbores. Additionally, the model is improved by considering temperature dependent drilling fluid transport and thermal properties. Transport properties such as viscosity and density are obtained by lab measurements, which allows for investigation of the effect of non-Newtonian fluid behavior on the heat transfer. Furthermore, applying a non-Newtonian pressure loss model enables an opportunity to evaluate the impact of viscous forces on fluid properties and thus the overall heat transfer. Results from sensitivity analysis of both drilling fluid properties and other relevant parameters will be presented. The main application area of this model is related to optimization of drilling fluid, hydraulics, and wellbore design parameters, ultimately leading to safe and cost efficient operations.

PDF PDF (804 Kb)        DOI: 10.4173/mic.2018.2.7

DOI forward links to this article:
[1] EdvalJ.P. Santos (2020), doi:10.1016/j.petlm.2020.04.004
[2] Cornelius Borecho Bavoh, Janet Matuamu Adam and Bhajan Lal (2021), doi:10.1016/j.matpr.2021.08.028
[3] Dong Xiao, Yifan Hu, Yingfeng Meng, Gao Li, Tianduoyi Wang and Weixiong Chen (2021), doi:10.1016/j.petrol.2021.109814
[4] Dong Xiao, Yifan Hu, Yongyou Wang, Hu Deng, Jichuan Zhang, Bo Tang, Jingyang Xi, Sihong Tang and Gao Li (2022), doi:10.1016/j.applthermaleng.2022.118684
References:
[1] Aadnoy, B.S., Fazaelizadeh, M., and Hareland, G. (2010). Aadnoy, B, S., Fazaelizadeh, M., and Hareland, G. A 3D analytical model for wellbore friction. Journal of Canadian Petroleum Technology. 49:25--36. doi:10.2118/141515-PA
[2] Alves, I.N., Alhanati, F. J.S., and Shoham, O. (1992). Alves, I, N., Alhanati, F. J.S., and Shoham, O. A unified model for predicting flowing temperature distribution in wellbores and pipelines. 1992. doi:10.2118/20632-PA
[3] Cameron, C. (2001). Cameron, C, Drilling fluids design and management for extended reach drilling. SPE/IADC Middle East Drilling Technology Conference, 22-24 October, Bahrain. doi:10.2118/72290-MS
[4] Corre, B., Eymard, R., and Guenot, A. (1984). Corre, B, , Eymard, R., and Guenot, A. Numerical computation of temperature distribution in a wellbore while drilling. SPE Annual Technical Conference and Exhibition, 16-19 September, Houston, Texas. doi:10.2118/13208-MS
[5] Fan, H., Zhou, H., Wang, G., Peng, Q., and Wang, Y. (2014). Fan, H, , Zhou, H., Wang, G., Peng, Q., and Wang, Y. Utility hydraulic calculation model of herschel-bulkley rheological model for MPD hydraulics. SPE Asia Pacific Oil and Gas Conference and Exhibition, 14-16 October, Adelaide, Australia. doi:10.2118/171443-MS
[6] Gnielinski, V. (1976). Gnielinski, V, New equations for heat and mass transfer in the turbulent pipe and channel flow. Int. Chem. Eng.. 16(2):359--368. .
[7] Hamrick, T.R. (2011). Hamrick, T, R. Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling. West Virginia University. .
[8] Holmes, C.S. and Swift, S.C. (1970). Holmes, C, S. and Swift, S.C. Calculation of circulating mud temperatures. J. Pet. Tech.. doi:10.2118/2318-PA
[9] Kabir, C.S., Hasan, A.R., Kouba, G.E., and Ameen, M. (1996). Kabir, C, S., Hasan, A.R., Kouba, G.E., and Ameen, M. Determining circulating fluid temperature in drilling, workover, and well control operations. SPE Drilling and Completion. doi:10.2118/24581-PA
[10] Keller, H.H., Couch, E.J., and Berry, P.M. (1973). Keller, H, H., Couch, E.J., and Berry, P.M. Temperature distribution in circulating mud columns. Society of Petroleum Engineers Journal. doi:10.2118/3605-PA
[11] Kumar, A. and Samuel, R. (2013). Kumar, A, and Samuel, R. Analytical model to predict the effect of pipe friction on downhole fluid temperatures. SPE Drilling and Completion. doi:10.2118/165934-PA
[12] Maghari, A. and Safaei, Z. (2007). Maghari, A, and Safaei, Z. Predictions of the joule-thomson inversion curve for water and methanol from the lj-saft eos. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2007. 26:69--74. .
[13] Metzner, A.B. and Reed, J.C. (1955). Metzner, A, B. and Reed, J.C. Flow of non-newtonian fluids—correlation of the laminar, transition, and turbulent-flow regions. AIChE Journal. 1:434--440. doi:10.1002/aic.690010409
[14] Munson, B.R., Young, D.F., and Okiishi, T.H. (2006). Munson, B, R., Young, D.F., and Okiishi, T.H. Fundamentals of fluid mechanics. Hoboken, N.J: Wiley. .
[15] Payne, M.L., Cocking, D.A., and Hatch, A.J. (1994). Payne, M, L., Cocking, D.A., and Hatch, A.J. Critical technologies for success in extended reach drilling. Journal of Petroleum Technology. doi:10.2118/28293-MS
[16] Poling, B.E., Prausnitz, J.M., and O'connell, J.P. (2001). Poling, B, E., Prausnitz, J.M., and O'connell, J.P. The properties of gases and liquids. Mcgraw-hill, New York. .
[17] Ramey, J., H.J. (1962). Ramey, J, , H.J. Wellbore heat transmission. 1962. doi:10.2118/96-PA
[18] Raymond, L.R. (1969). Raymond, L, R. Temperature distribution in a circulating drilling fluid. Journal of Petroleum Technology. doi:10.2118/2320-PA
[19] Reed, T.D. and Pilehvari, A.A. (1993). Reed, T, D. and Pilehvari, A.A. A new model for laminar, transitional, and turbulent flow of drilling muds. SPE Production Operations Symposium, 21-23 March, Oklahoma City, Oklahoma. doi:10.2118/25456-MS
[20] Santoyo, E., Garcia, A., Espinosa, G., Santoyo-Gutiérrez, S., and González-Partida, E. (2003). Santoyo, E, , Garcia, A., Espinosa, G., Santoyo-Gutiérrez, S., and González-Partida, E. Convective heat-transfer coefficients of non-newtonian geothermal drilling fluids. Journal of Geochemical Exploration. 78:249--255. doi:10.1016/S0375-6742(03)00146-8
[21] Seider, E.N. and Tate, G.E. (1936). Seider, E, N. and Tate, G.E. Heat transfer and pressure drop of liquids in tubes. 1936. .
[22] Stamnes, O.N. (2011). Stamnes, O, N. Nonlinear estimation with applications to drilling. Ph.D. thesis of NTNU. .
[23] Theodore, B.L., Incropera, F.P., David, D.P., and Lavine, A.S. (2011). Theodore, B, L., Incropera, F.P., David, D.P., and Lavine, A.S. Fundamentals of heat and mass transfer. John Wiley & Sons, Hoboken, NJ. .
[24] Thompson, M. and Burgess, T.M. (1985). Thompson, M, and Burgess, T.M. The prediction of interpretation of downhole mud temperature while drilling. SPE Annual Technical Conference and Exhibition, 22-26 September, Las Vegas, Nevada. doi:10.2118/14180-MS


BibTeX:
@article{MIC-2018-2-7,
  title={{Downhole Temperature Modeling for Non-Newtonian Fluids in ERD Wells}},
  author={Sui, Dan and Langåker, Vebjørn Haraldstad},
  journal={Modeling, Identification and Control},
  volume={39},
  number={2},
  pages={131--149},
  year={2018},
  doi={10.4173/mic.2018.2.7},
  publisher={Norwegian Society of Automatic Control}
};