“Software Components of the Thorvald II Modular Robot”

Authors: Lars Grimstad and Pål J. From,
Affiliation: Norwegian University of Life Sciences
Reference: 2018, Vol 39, No 3, pp. 157-165.

Keywords: Modular robots, agricultural robots, mobile robots

Abstract: In this paper, we present the key software components of the Thorvald II mobile robotic platform. Thorvald~II is a modular system developed by the authors for creating robots of arbitrary shapes and sizes, primarily for the agricultural domain. Several robots have been built and are currently operating on farms and universities at various locations in Europe. Robots may take many different forms, and may be configured for differential drive, Ackermann steering, all-wheel drive, all-wheel steering with any number of wheels etc. The software therefore needs to be configuration agnostic. In this paper we present an architecture that allows for simple setup of never-seen-before robot configurations. The presented software is organized in a collection of ROS packages, made available to the reader. These packages allow a user to create her or his own robot configurations and simulate these robots in Gazebo using a provided plugin. Although the presented packages were created to be used with Thorvald robots, they may also be useful for people who are looking to develop their own robot and are interested in testing various robot configurations in simulation before settling on a specific design. To create a robot, the user lists modules with key parameters in one single configuration file and gives this as an input to the robot at startup. Example configuration files are provided within the packages. In this paper, we discuss key aspects of the ROS packages and provide directions on where to find updated information on how to install and use these.

PDF PDF (4318 Kb)        DOI: 10.4173/mic.2018.3.2

DOI forward links to this article:
[1] Jawad Iqbal, Rui Xu, Shangpeng Sun and Changying Li (2020), doi:10.3390/robotics9020046
[2] Sariah Mghames, Marc Hanheide and Amir Ghalamzan E. (2020), doi:10.1109/IROS45743.2020.9341728
[3] K. D. Krestovnikov, A. A. Erashov, Yu. G. Vasyunina and A. I. Savel'ev (2022), doi:10.22314/2073-7599-2022-16-1-78-88
[4] Rui Xu and Changying Li (2022), doi:10.34133/2022/9760269
[5] Leonardo Guevara, Marc Hanheide and Simon Parsons (2023), doi:10.1002/rob.22227
[6] Zhijun Zhang, An Pan, Xingru Li and Yamei Luo (2023), doi:10.1109/CSIS-IAC60628.2023.10363912
[7] Leonardo Guevara, Muhammad Khalid, Marc Hanheide and Simon Parsons (2024), doi:10.1016/j.compag.2024.108987
References:
[1] Bak, T. and Jakobsen, H. (2004). Bak, T, and Jakobsen, H. Agricultural robotic platform with four wheel steering for weed detection. Biosystems Engineering. 87(2):125 -- 136. doi:10.1016/j.biosystemseng.2003.10.009
[2] Bawden, O., Ball, D., Kulk, J., Perez, T., and Russell, R. (2014). Bawden, O, , Ball, D., Kulk, J., Perez, T., and Russell, R. A lightweight, modular robotic vehicle for the sustainable intensification of agriculture. In Australian Conf. on Robotics and Automation. Univ. Melbourne. http://eprints.qut.edu.au/82219/, .
[3] Botterill, T., Paulin, S., Green, R., Williams, S., Lin, J., Saxton, V., Mills, S., Chen, X., and Corbett-Davies, S. (2016). Botterill, T, , Paulin, S., Green, R., Williams, S., Lin, J., Saxton, V., Mills, S., Chen, X., and Corbett-Davies, S. A robot system for pruning grape vines. Journal of Field Robotics. 34(6):1100--1122. https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21680, doi:10.1002/rob.21680
[4] Feng, Q., Zou, W., Fan, P., Zhang, C., and Wang, X. (2018). Feng, Q, , Zou, W., Fan, P., Zhang, C., and Wang, X. Design and test of robotic harvesting system for cherry tomato. International Journal of Agricultural and Biological Engineering. 11(1):96--100. doi:10.25165/j.ijabe.20181101.2853
[5] Grimstad, L. and From, P.J. (2017). Grimstad, L, and From, P.J. Thorvald II - a Modular and Re-configurable Agricultural Robot. In IFAC 2017 World Congress. 2017. doi:10.1016/j.ifacol.2017.08.1005
[6] Grimstad, L. and From, P.J. (2017). Grimstad, L, and From, P.J. The thorvald ii agricultural robotic system. Robotics, 2017. 6(4). http://www.mdpi.com/2218-6581/6/4/24, doi:10.3390/robotics6040024
[7] Grimstad, L. and From, P.J. (2018). Grimstad, L, and From, P.J. A configuration-independent software architecture for modular robots. In 4th IEEE/IFToMM Intl. Conf. on Reconfigurable Mechanisms and Robots. 2018. .
[8] Grimstad, L., Zakaria, R., Le, T.D., and From, P.J. (2018). Grimstad, L, , Zakaria, R., Le, T.D., and From, P.J. A novel autonomous robot for greenhouse applications. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. .
[9] van Henten, E., Hemming, J., van Tuijl, B., Kornet, J., Meuleman, J., Bontsema, J., and van Os, E. (2002). van Henten, E, , Hemming, J., van Tuijl, B., Kornet, J., Meuleman, J., Bontsema, J., and van Os, E. An autonomous robot for harvesting cucumbers in greenhouses. Autonomous Robots. 13(3):241--258. doi:10.1023/A:1020568125418
[10] Koenig, N. and Howard, A. (2004). Koenig, N, and Howard, A. Design and use paradigms for gazebo, an open-source multi-robot simulator. In IEEE/RSJ Intl. Conf. Intelligent Robots and Systems, volume3. pages 2149--2154 vol.3. doi:10.1109/IROS.2004.1389727
[11] Lehnert, C., English, A., McCool, C., Tow, A.W., and Perez, T. (2017). Lehnert, C, , English, A., McCool, C., Tow, A.W., and Perez, T. Autonomous sweet pepper harvesting for protected cropping systems. IEEE Robotics and Automation Letters. 2(2):872--879. doi:10.1109/LRA.2017.2655622
[12] Mueller-Sim, T., Jenkins, M., Abel, J., and Kantor, G. (2017). Mueller-Sim, T, , Jenkins, M., Abel, J., and Kantor, G. The robotanist: A ground-based agricultural robot for high-throughput crop phenotyping. 2017 IEEE Intl. Conf. on Robotics and Automation (ICRA). pages 3634--3639. doi:10.1109/ICRA.2017.7989418
[13] Quigley, M. and et.al. (2009). Quigley, M, and et.al. Ros: an open-source robot operating system. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop on Open Source Robotics. Kobe, Japan. .
[14] Ruckelshausen, A. and et.al. (2009). Ruckelshausen, A, and et.al. Bonirob–an autonomous field robot platform for individual plant phenotyping. In European Conf. Precision Agriculture. pages 841--847. .
[15] Ye, Y., Wang, Z., Jones, D., He, L., Taylor, M.E., Hollinger, G.A., and Zhang, Q. (2017). Ye, Y, , Wang, Z., Jones, D., He, L., Taylor, M.E., Hollinger, G.A., and Zhang, Q. Bin-dog: A robotic platform for bin management in orchards. Robotics. 6(2). doi:10.3390/robotics6020012


BibTeX:
@article{MIC-2018-3-2,
  title={{Software Components of the Thorvald II Modular Robot}},
  author={Grimstad, Lars and From, Pål J.},
  journal={Modeling, Identification and Control},
  volume={39},
  number={3},
  pages={157--165},
  year={2018},
  doi={10.4173/mic.2018.3.2},
  publisher={Norwegian Society of Automatic Control}
};