“Transient conformal TEHL algorithms for multibody simulation”
Authors: Dag Fritzson,Affiliation: AB SKF
Reference: 2018, Vol 39, No 3, pp. 209-232.
Keywords: conformal contact, TEHL, transient, thermal, elastohydrodynamic, multibody, BEAST
Abstract: This article describes aspects of transient thermal elasto-hydrodynamical lubrication (TEHL) contact modelling for conformal contacts. This is to be utilized in a multibody simulation (MBS) framework for engineering purposes. The verification and proof of concept is done by implementation in the tool BEAST (Fritzson et al., 2014) and by comparision to published experiments and simulation results.
PDF (5615 Kb) DOI: 10.4173/mic.2018.3.6
DOI forward links to this article:
[1] Peter Fritzson, Adrian Pop, Karim Abdelhak, Adeel Ashgar, Bernhard Bachmann, Willi Braun, Daniel Bouskela, Robert Braun, Lena Buffoni, Francesco Casella, Rodrigo Castro, Rudiger Franke, Dag Fritzson, (2020), doi:10.4173/mic.2020.4.1 |
[1] Bassani, R. (1992). Bassani, R, Hydrostatic Lubrication, volume22 of Tribology series. Elsevier Science Publisher B.V., first edition. ISBN 0-444-55565-X. .
[2] Bird, R., Stewart, W., and Lightfoot, E. (2007). Bird, R, , Stewart, W., and Lightfoot, E. Transport Phenomena. John Wiley & Sons, revised second edition. ISBN 978-0-470-11539-8. .
[3] Bruyere, V., Fillot, N., Morales-Espejel, G., and Vergne, P. (2012). Bruyere, V, , Fillot, N., Morales-Espejel, G., and Vergne, P. A Two-Phase Flow Approach for the Outlet of Lubricated Line Contacts. ASME Journal of Tribology. 134(4):041503:1--041503:10. doi:10.11115/1.4006277
[4] Doki-Thonon, T. (2012). Doki-Thonon, T, Thermal effects in elastohydrodynamic spinning circular contacts. Ph.D. thesis, INSA de Lyon. 2012ISAL0058. .
[5] Dowson, D. and Higginson, G. (1966). Dowson, D, and Higginson, G. Elasto-Hydrodynamic Lubrication. Pergamon Press, Oxford. .
[6] ESDU 78029. (0). ESDU 78029, Equilibrium temperatures in self-contained bearing assemblies - Part IV: heat transfer coefficient and joint conductance. Technical Report 78029, Amendments A and B, Engineering Science Data Unit, 1978. .
[7] Floberg, L. (1959). Floberg, L, Experimental investigation of power loss in journal bearings considering cavitation. Transactions of Chalmers University of Technology No. 215, The Institute of Machine Elements, Chalmers University of Technology, Gothenburg, Sweden. .
[8] Floberg, L. (1969). Floberg, L, On the optimum design of sector-shaped tilting-pad thrust bearings. Acta Polytechnica Scandinavica. Mechanical Engineering Series(45). .
[9] Fritzson, D., Stacke, L.-E., and Anders, J. (2014). Fritzson, D, , Stacke, L.-E., and Anders, J. Dynamic simulation --- Building knowledge in product development. SKF Evolution. 1(1):21--26. .
[10] Fritzson, D., Staahl, J., and Morales-Espejel, G. (2011). Fritzson, D, , Staahl, J., and Morales-Espejel, G. Simulation of fretting fatigue in conformal and concentrated contacts. Tribology Online. 6(1):64--70. doi:10.2474/trol.6.64
[11] Glavatskikh, S. (2000). Glavatskikh, S, On the Hydrodynamic Lubrication in Tilting Pad Thrust Bearings. Ph.D. thesis, Luleaa University of Technology, Luleaa, Sweden, 2000. Doctoral thesis 2000:34, ISSN: 1402-1544, ISRN: LTU-DT--00/34--SE. .
[12] Glavatskikh, S. and Larsson, R. (2000). Glavatskikh, S, and Larsson, R. Improved Efficiency with the Use of Environmentally Adapted Lubricants. Research report 2000:04, Luleaa University of Technology, Luleaa, Sweden. ISSN: 1402-1528, ISRN: LTU-FR--00/04--SE. .
[13] Jakobsson, B. and Floberg, L. (1957). Jakobsson, B, and Floberg, L. The finite journal bearing considering vaporization. Transactions of Chalmers University of Technology No. 190, The Institute of Machine Elements, Chalmers University of Technology, Gothenburg, Sweden. .
[14] Roelands, C. (1966). Roelands, C, Correlation Aspects of the Viscosity-Temperature Relationship of Lubricating Oils. Ph.D. thesis, Technische Hogeschool Delft, The Netherlands. .
[15] Sahlin, F., Almqvist, A., Larsson, R., and Glavatskih, S. (2007). Sahlin, F, , Almqvist, A., Larsson, R., and Glavatskih, S. A caviation algorithm for arbitrary lubricant compressibility. Tribology International. 40(8):1294--1300. doi:10.1016/j.triboint.2007.02.009
[16] Staahl, J. (2002). Staahl, J, Mechanical Analysis of Lubrication and Lubricants. Ph.D. thesis, Division of Machine Elements, Lund Institute of Technology. ISRN LUTMDN/TMME--1016--SE. .
[17] Tanaka, K., Fujino, T., Fillot, N., Vergne, P., and Iwamoto, K. (2017). Tanaka, K, , Fujino, T., Fillot, N., Vergne, P., and Iwamoto, K. Numerical simulation of hydrodynamic lubrication by smoothed particle hydrodynamics method. In Proceedings of 44th Leeds-Lyon Symposium on Tribology. page 108. .
[18] Tuomas, D. and Isaksson, O. (2006). Tuomas, D, and Isaksson, O. Compressibility of oil/refrigerant lubricants in elasto-hydrodynamic contacts. Journal of Tribology. 128(1):218--220. doi:10.1115/1.2125967
[19] Venner, C. (1991). Venner, C, Multilevel Solution of the EHL Line and Point Contact Problems. Ph.D. thesis, Universiteit Twente, The Netherlands. ISBN 90-9003974-0. .
BibTeX:
@article{MIC-2018-3-6,
title={{Transient conformal TEHL algorithms for multibody simulation}},
author={Fritzson, Dag},
journal={Modeling, Identification and Control},
volume={39},
number={3},
pages={209--232},
year={2018},
doi={10.4173/mic.2018.3.6},
publisher={Norwegian Society of Automatic Control}
};