“A Novel Process-Reaction Curve Method for Tuning PID Controllers”

Authors: Christer Dalen and David Di Ruscio,
Affiliation: University of South-Eastern Norway
Reference: 2018, Vol 39, No 4, pp. 273-291.

Keywords: PID control, model approximation, relative time delay error, robustness, performance, optimal, process-reaction curve, process control

Abstract: A novel process-reaction curve method for tuning PID controllers for (possible) higher order processes/models is presented. The proposed method is similar to the Ziegler-Nichols process reaction curve method, viz. only the maximum slope and lag need to be identified from an open loop step response. The relative time delay error (relative delay margin), delta is the tuning parameter. The proposed method is verified through extensive numerical simulations and is found close to optimal in many of the motivated process examples. In order to handle the wide set of process models, two model reduction modes are presented.

PDF PDF (6327 Kb)        DOI: 10.4173/mic.2018.4.4

DOI forward links to this article:
[1] Christer Dalen and David Di Ruscio (2019), doi:10.4173/mic.2019.4.2
References:
[1] Abbasi, I., Ali, S., Ovinis, M., and Naeem, W. (2017). Abbasi, I, , Ali, S., Ovinis, M., and Naeem, W. U-model based controller design for an unmanned free swimming submersible (UFSS) vehicle under hydrodynamic disturbances. 2017. 46:742--748. .
[2] Aastrom, K. and Haegglund, T. (1995). Aastrom, K, and Haegglund, T. PID Controllers: Theory, Design, and Tuning. Instrument Society of America. .
[3] Aastrom, K. and Haegglund, T. (2000). Aastrom, K, and Haegglund, T. Benchmark Systems for PID Control. IFAC Proceedings Volumes. 33(4):165 -- 166. doi:10.1016/S1474-6670(17)38238-1
[4] Aastrom, K. and Haegglund, T. (2004). Aastrom, K, and Haegglund, T. Revisiting the ziegler–nichols step response method for pid control. Journal of Process Control. 14(6):635 -- 650. doi:10.1016/j.jprocont.2004.01.002
[5] Aastroem, K. and Hagglund, T. (2006). Aastroem, K, and Hagglund, T. Advanced PID Control. ISA-The Instrumentation, Systems, and Automation Society. .
[6] Astrom, K.J. and Hagglund, T. (1984). Astrom, K, J. and Hagglund, T. A frequency domain method for automatic tuning of simple feedback loops. In The 23rd IEEE Conference on Decision and Control. pages 299--304. doi:10.1109/CDC.1984.272361
[7] Aastrom, K.J., Panagopoulos, H., and Haegglund, T. (1998). Aastrom, K, J., Panagopoulos, H., and Haegglund, T. Design of PI Controllers Based on Non-convex Optimization. Automatica. 34(5):585--601. doi:10.1016/S0005-1098(98)00011-9
[8] Dalen, C. and DiRuscio, D. (2017). Dalen, C, and DiRuscio, D. PD/PID controller tuning based on model approximations: Model reduction of some unstable and higher order nonlinear models. Modeling, Identification and Control. 38(4):185--197. doi:10.4173/mic.2017.4.3
[9] Dalen, C. and DiRuscio, D. (2018). Dalen, C, and DiRuscio, D. A Semi-Heuristic Process-Reaction Curve PID Controller Tuning Method. Modeling, Identification and Control. 39(1):37--43. doi:10.4173/mic.2018.1.4
[10] Daraz, A., Malik, S.A., Saleem, T., and Bhati, S.A. (2017). Daraz, A, , Malik, S.A., Saleem, T., and Bhati, S.A. Ziegler Nichols Based Integral Proportional Controller for Superheated Steam Temperature Control System. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering. 11(5):570 -- 574. .
[11] DiRuscio, D. (1996). DiRuscio, D, Combined Deterministic and Stochastic System Identification and Realization: DSR - A Subspace Approach Based on Observations. Modeling, Identification and Control. 17(3):193--230. doi:10.4173/mic.1996.3.3
[12] DiRuscio, D. (2008). DiRuscio, D, Subspace system identification of the Kalman filter: open and closed loop systems. In In Proc. Intl. Multi-Conf. on Engineering and Technological Innovation. 2008. .
[13] DiRuscio, D. (2009). DiRuscio, D, Closed and Open Loop Subspace System Identification of the Kalman Filter. Modeling, Identification and Control. 30(2):71--86. doi:10.4173/mic.2009.2.3
[14] DiRuscio, D. (2012). DiRuscio, D, PI Controller Tuning Based on Integrating Plus Time Delay Models: Performance Optimal tuning. 2012. In Proceedings of the IASTED Control and Applications Conference. Crete Greece June 18-21. .
[15] DiRuscio, D. and Dalen, C. (2017). DiRuscio, D, and Dalen, C. Tuning PD and PID Controllers for Double Integrating Plus Time Delay Systems. Modeling, Identification and Control. 38(2):95--110. doi:10.4173/mic.2017.2.4
[16] Farouk, N., Sheng, L., and Said, L. (2012). Farouk, N, , Sheng, L., and Said, L. Speed Control System on Marine Diesel Engine Based on a Self-Tuning Fuzzy PID Controller. 2012. 4(6):686--690. .
[17] Garpinger, O. and Haegglund, T. (2008). Garpinger, O, and Haegglund, T. A Software Tool for Robust PID Design. IFAC Proceedings Volumes. 41(2):6416 -- 6421. doi:10.3182/20080706-5-KR-1001.01082
[18] Grimholt, C. and Skogestad, S. (2013). Grimholt, C, and Skogestad, S. PID-Control on First Order Plus Time Delay Systems & Verification of the SIMC Rules. IFAC Proceedings Volumes. 46(32):265--270. doi:10.3182/20131218-3-IN-2045.00122
[19] Grimholt, C. and Skogestad, S. (2016). Grimholt, C, and Skogestad, S. Optimal PID control of double integrating processes. IFAC-PapersOnLine, 2016. 49(7):127--132. doi:10.1016/j.ifacol.2016.07.228
[20] Grimholt, C. and Skogestad, S. (2016). Grimholt, C, and Skogestad, S. Optimization of Fixed-Order Controllers Using Exact Gradients. 2016. http://folk.ntnu.no/skoge/publications/2016/grimholt-jpc-pid-exact-gradient/main.pdf, Unpublished. .
[21] Kristiansson, B. and Lennartson, B. (2006). Kristiansson, B, and Lennartson, B. Evaluation and simple tuning of PID controllers with high-frequency robustness. Journal of Process Control. 16(2):91 -- 102. doi:10.1016/j.jprocont.2005.05.006
[22] Lee, J., Cho, W., and Edgar, T.F. (2014). Lee, J, , Cho, W., and Edgar, T.F. Simple Analytic PID Controller Tuning Rules Revisited. Industrial & Engineering Chemistry Research. 53(13):5038--5047. doi:10.1021/ie4009919
[23] Ljung, L. (1999). Ljung, L, System Identification (2nd ed.): Theory for the User. Prentice Hall PTR, Upper Saddle River, NJ, USA. .
[24] Mantz, R.J. and J.Tacconi, E. (1989). Mantz, R, J. and J.Tacconi, E. Complementary rules to Ziegler and Nichols' rules for a regulating and tracking controller. 1989. 49:1465--1471. .
[25] Manum, H. (2005). Manum, H, Extensions of Skogestad’s SIMC tuning rules to oscillatory and unstable processes. Internal report. .
[26] MATLAB. (2016). MATLAB, Version 9.1.0.441655 (R2016b). The MathWorks Inc., Natick, Massachusetts, USA. Control System Toolbox, Version 9.3. Optimization Toolbox, Version 6.2. .
[27] S.J.Sadati, A. R.N. and Ghaderi, R. (2012). S, J.Sadati, A. R.N. and Ghaderi, R. Fractional-Order Control of a Nonlinear Time-Delay System: Case Study in Oxygen Regulation in the Heart-Lung Machine. Journal of Control Science and Engineering. .
[28] S.SaiTarun, G. I.K., P.Ramana. (2014). S, SaiTarun, G. I.K., P.Ramana. Controller Design and Load Frequency Control for Single Area Power System with Model Order Reduction Technique. Int. Journal of Engineering Research and Applications. 4(11):96--101. doi:10.3182/20131218-3-IN-2045.00122
[29] Salloum, R., Moaveni, B., and Arvan, M.R. (2014). Salloum, R, , Moaveni, B., and Arvan, M.R. Robust PID Controller Design for a Real Electromechanical Actuator. Acta Polytechnica Hungarica. 11(5):125--144. .
[30] Seborg, D., Edgar, T., and Mellichamp, D. (1989). Seborg, D, , Edgar, T., and Mellichamp, D. Process Dynamics and Control. Number v. 1 in Chemical Engineering Series. Wiley. .
[31] Seborg, D., Edgar, T., and Mellichamp, D. (2004). Seborg, D, , Edgar, T., and Mellichamp, D. Process dynamics and control. Wiley series in chemical engineering. Wiley. .
[32] Shamsuzzoha, M. (2013). Shamsuzzoha, M, Closed-Loop PI/PID Controller Tuning for Stable and Integrating Process with Time Delay. Industrial & Engineering Chemistry Research. 52(36):12973--12992. doi:10.1021/ie401808m
[33] Skogestad, S. (2001). Skogestad, S, Probably the best simple pid tuning rules in the world. In AIChE Annual Meeting, Reno, Nevada, Nov. 2001. .
[34] Skogestad, S. (2003). Skogestad, S, Simple analytic rules for model reduction and pid controller tuning. Journal of Process Control. 13(4):291 -- 309. doi:10.1016/S0959-1524(02)00062-8
[35] Skogestad, S. (2004). Skogestad, S, Simple analytic rules for model reduction and PID controller tuning. Modeling, Identification and Control. 25(2):85--120. doi:10.4173/mic.2004.2.2
[36] Skogestad, S. and Grimholt, C. (2012). Skogestad, S, and Grimholt, C. The SIMC Method for Smooth PID Controller Tuning, pages 147--175. Springer London, London. doi:10.1007/978-1-4471-2425-2_5
[37] Wang, R., Tan, C., Xu, J., Wang, Z., Jin, J., and Man, Y. (2017). Wang, R, , Tan, C., Xu, J., Wang, Z., Jin, J., and Man, Y. Pressure Control for a Hydraulic Cylinder Based on a Self-Tuning PID Controller Optimized by a Hybrid Optimization Algorithm. Algorithms. 10(1):19. doi:10.3390/a10010019
[38] Ziegler, J. (1941). Ziegler, J, ``On-the-job'' adjustments of air operated recorder-controllers. Instruments. 16:394--7. .
[39] Ziegler, J. and Nichols, N.B. (1942). Ziegler, J, and Nichols, N.B. Optimum Settings for Automatic Controllers. Trans. American Society of Mechanical Engineers. 64:759--768. .
[40] Ziegler, J. and Nichols, N.B. (1943). Ziegler, J, and Nichols, N.B. Process lags in automatic control circuits. Trans. American Society of Mechanical Engineers. 65:433--444. .


BibTeX:
@article{MIC-2018-4-4,
  title={{A Novel Process-Reaction Curve Method for Tuning PID Controllers}},
  author={Dalen, Christer and Di Ruscio, David},
  journal={Modeling, Identification and Control},
  volume={39},
  number={4},
  pages={273--291},
  year={2018},
  doi={10.4173/mic.2018.4.4},
  publisher={Norwegian Society of Automatic Control}
};