“Enabling Energy Savings in Offshore Mechatronic Systems by using Self-Contained Cylinders”

Authors: Daniel Hagen, Damiano Padovani and Martin Choux,
Affiliation: University of Agder and University of Agder
Reference: 2019, Vol 40, No 2, pp. 89-108.

Keywords: Electrification of hydraulics, linear actuator, offshore mechatronic systems, self-contained electro-hydraulic cylinder, proportional directional control valve, passive load-holding, energy savings

Abstract: This paper proposes a novel actuation system for an offshore drilling application. It consists of three self-contained electro-hydraulic cylinders that can share and store regenerated energy. The energy saving potential of the proposed solution is analyzed through a multibody system simulation. The self-contained system demonstrates superior energy efficiency compared to the benchmark system representing the state-of-the-art approach used today (i.e., valve-controlled cylinders by means of pressure-compensated directional control valves and counter-balance valves, supplied by a centralized hydraulic power unit). Due to the power on demand capability, the cancellation of the throttling losses, and the opportunity to recover energy in motoring quadrants, the self-contained system consumes 83.44% less energy without affecting the system's performance.

PDF PDF (6084 Kb)        DOI: 10.4173/mic.2019.2.2

DOI forward links to this article:
[1] Daniel Hagen, Damiano Padovani and Martin Choux (2019), doi:10.3390/act8040079
[2] Daniel Hagen, Damiano Padovani and Martin Choux (2019), doi:10.3390/act8040078
[3] Daniel Hagen, Damiano Padovani and Martin Choux (2020), doi:10.1109/ICIEA48937.2020.9248373
[4] Chong Shi, Yan Ren, Hesheng Tang and Leaven Romeo Mupfukirei (2021), doi:10.1088/1361-6501/abfad2
[5] Konrad Johan Jensen, Morten Kjeld Ebbesen and Michael Rygaard Hansen (2021), doi:10.3390/en14206566
[6] Shufei Qiao, Yunxiao Hao, Long Quan, Lei Ge and Lianpeng Xia (2022), doi:10.1109/ACCESS.2022.3149515
[7] D Padovani, P Fresia, M Rundo and G Altare (2022), doi:10.1088/1742-6596/2385/1/012028
[8] Jeremy Beale and Damiano Padovani (2023), doi:10.1109/ICMRE56789.2023.10106608
[9] D Padovani, M Rundo, P Fresia and G Altare (2023), doi:10.1088/1742-6596/2648/1/012051
[10] Wei Zhao, Morten Kjeld Ebbesen and Torben Ole Andersen (2023), doi:10.1109/ICCMA59762.2023.10374706
[11] Zengguang Liu, Jisu SUN, Daling Yue, Xiukun Zuo, Hongfei GAO, Ke Feng, Wanmi Chen and Xiaogang Liu (2024), doi:10.1117/12.3026210
References:
[1] Bak, M.K. (2014). Bak, M, K. Model Based Design of Electro-Hydraulic Motion Control Systems for Offshore Pipe Handling Equipment. Ph.D. thesis, University of Agder. doi:10.16373/j.cnki.ahr.150049
[2] Bak, M.K. and Hansen, M.R. (2013). Bak, M, K. and Hansen, M.R. Model based design optimization of operational reliability in offshore boom cranes. International Journal of Fluid Power. 14(3). doi:10.1080/14399776.2013.10801413
[3] European Commission. (2014). European Commission, Directive 2014/34/EU of the European Parliament and of the Council. Technical report, Official Journal of the European Union L96. .
[4] Hagen, D., Padovani, D., and Choux, M. (2019). Hagen, D, , Padovani, D., and Choux, M. Design and Implementation of Pressure Feedback for Load-Carrying Applications With Position Control [Accepted.
[5] Hagen, D., Padovani, D., and Ebbesen, M.K. (2018). Hagen, D, , Padovani, D., and Ebbesen, M.K. Study of a Self-Contained Electro-Hydraulic Cylinder Drive. 2018 Global Fluid Power Society PhD Symposium, GFPS 2018, 2018. doi:10.1109/GFPS.2018.8472360
[6] Hagen, D., Pawlus, W., Ebbesen, M.K., and Andersen, T.O. (2017). Hagen, D, , Pawlus, W., Ebbesen, M.K., and Andersen, T.O. Feasibility Study of Electromechanical Cylinder Drivetrain for Offshore Mechatronic Systems. Modeling, Identification and Control. 38(2). doi:10.4173/mic.2017.2.2
[7] Harnefors, L. (2003). Harnefors, L, Control of Variable-Speed Drives. Maelardalen University. .
[8] Ketelsen, S., Padovani, D., Andersen, T., Ebbesen, M., and Schmidt, L. (2019). Ketelsen, S, , Padovani, D., Andersen, T., Ebbesen, M., and Schmidt, L. Classification and Review of Pump-Controlled Differential Cylinder Drives. Energies. 12(7). doi:10.3390/en12071293
[9] Ketelsen, S., Schmidt, L., Donkov, V., and Andersen, T. (2018). Ketelsen, S, , Schmidt, L., Donkov, V., and Andersen, T. Energy saving potential in knuckle boom cranes using a novel pump controlled cylinder drive. Modeling, Identification and Control. 39(2). doi:10.4173/mic.2018.2.3
[10] Kjelland, M.B. (2016). Kjelland, M, B. Offshore Wind Turbine Access Using Knuckle Boom Cranes. Ph.D. thesis, University of Agder. .
[11] Krause, P., Wasynczuk, O., and Sudhoff, S. (2002). Krause, P, , Wasynczuk, O., and Sudhoff, S. Analysis of Electric Machinery. IEEE Press. .
[12] Michel, S. and Weber, J. (2012). Michel, S, and Weber, J. Energy-efficient electrohydraulic companct drives for low power applications. ASME/BATH 2012 Symposium on Fluid Power and Motion Control, 2012. .
[13] Padovani, D., Ketelsen, S., Hagen, D., and Schmidt, L. (2019). Padovani, D, , Ketelsen, S., Hagen, D., and Schmidt, L. A Self-Contained Electro-Hydraulic Cylinder with Passive Load-Holding Capability. Energies. 12(2):292. doi:10.3390/en12020292
[14] Pawlus, W., Choux, M., and Hansen, M.R. (2016). Pawlus, W, , Choux, M., and Hansen, M.R. Hydraulic vs. electric: A review of actuation systems in offshore drilling equipment. Modeling, Identification and Control. 37(1). doi:10.4173/mic.2016.1.1
[15] Ristic, M. and Wahler, M. (2018). Ristic, M, and Wahler, M. Electrification of Hydraulics Opens New Ways for Intelligent Energy-Optimized Systems. In 11th International Fluid Power Conference. 2018. .
[16] Schmidt, L., Groenkjaer, M., Pedersen, H.C., and Andersen, T.O. (2017). Schmidt, L, , Groenkjaer, M., Pedersen, H.C., and Andersen, T.O. Position Control of an Over‐Actuated Direct Hydraulic Cylinder Drive. Control Engineering Practice. 64. doi:10.1016/j.conengprac.2017.04.003
[17] Schmidt, L., Roemer, D.B., Pedersen, H.C., and Andersen, T.O. (2015). Schmidt, L, , Roemer, D.B., Pedersen, H.C., and Andersen, T.O. Speed-Variable Switched Differential Pump System for Direct Operation of Hydraulic Cylinders. In ASME/BATH 2015 Symposium on Fluid Power and Motion Control. 2015. doi:10.1115/FPMC2015-9575
[18] Sorensen, J.K. (2016). Sorensen, J, K. Reduction of Oscillations in Hydraulically Actuated Knuckle Boom Cranes. Ph.D. thesis, University of Agder. .
[19] Stecki, J.S. and Garbacik, A. (2002). Stecki, J, S. and Garbacik, A. Design and Steady-state Analysis of Hydraulic Control Systems. Fluid Power Net Publications. .
[20] Williamson, C. and Ivantysynova, M. (2007). Williamson, C, and Ivantysynova, M. The effect of pump efficiency on displacement-controlled actuator systems. In Tenth Scandinavian International Conference on Fluid Power, Tampere, Finland. 2007. .
[21] Bak, M.K. (2014). Bak, M, K. Model Based Design of Electro-Hydraulic Motion Control Systems for Offshore Pipe Handling Equipment. Ph.D. thesis, University of Agder. doi:10.16373/j.cnki.ahr.150049
[22] Bak, M.K. and Hansen, M.R. (2013). Bak, M, K. and Hansen, M.R. Model based design optimization of operational reliability in offshore boom cranes. International Journal of Fluid Power. 14(3). doi:10.1080/14399776.2013.10801413
[23] European Commission. (2014). European Commission, Directive 2014/34/EU of the European Parliament and of the Council. Technical report, Official Journal of the European Union L96. .
[24] Hagen, D., Padovani, D., and Choux, M. (2019). Hagen, D, , Padovani, D., and Choux, M. Design and Implementation of Pressure Feedback for Load-Carrying Applications With Position Control [Accepted.
[25] Hagen, D., Padovani, D., and Ebbesen, M.K. (2018). Hagen, D, , Padovani, D., and Ebbesen, M.K. Study of a Self-Contained Electro-Hydraulic Cylinder Drive. 2018 Global Fluid Power Society PhD Symposium, GFPS 2018, 2018. doi:10.1109/GFPS.2018.8472360
[26] Hagen, D., Pawlus, W., Ebbesen, M.K., and Andersen, T.O. (2017). Hagen, D, , Pawlus, W., Ebbesen, M.K., and Andersen, T.O. Feasibility Study of Electromechanical Cylinder Drivetrain for Offshore Mechatronic Systems. Modeling, Identification and Control. 38(2). doi:10.4173/mic.2017.2.2
[27] Harnefors, L. (2003). Harnefors, L, Control of Variable-Speed Drives. Maelardalen University. .
[28] Ketelsen, S., Padovani, D., Andersen, T., Ebbesen, M., and Schmidt, L. (2019). Ketelsen, S, , Padovani, D., Andersen, T., Ebbesen, M., and Schmidt, L. Classification and Review of Pump-Controlled Differential Cylinder Drives. Energies. 12(7). doi:10.3390/en12071293
[29] Ketelsen, S., Schmidt, L., Donkov, V., and Andersen, T. (2018). Ketelsen, S, , Schmidt, L., Donkov, V., and Andersen, T. Energy saving potential in knuckle boom cranes using a novel pump controlled cylinder drive. Modeling, Identification and Control. 39(2). doi:10.4173/mic.2018.2.3
[30] Kjelland, M.B. (2016). Kjelland, M, B. Offshore Wind Turbine Access Using Knuckle Boom Cranes. Ph.D. thesis, University of Agder. .
[31] Krause, P., Wasynczuk, O., and Sudhoff, S. (2002). Krause, P, , Wasynczuk, O., and Sudhoff, S. Analysis of Electric Machinery. IEEE Press. .
[32] Michel, S. and Weber, J. (2012). Michel, S, and Weber, J. Energy-efficient electrohydraulic companct drives for low power applications. ASME/BATH 2012 Symposium on Fluid Power and Motion Control, 2012. .
[33] Padovani, D., Ketelsen, S., Hagen, D., and Schmidt, L. (2019). Padovani, D, , Ketelsen, S., Hagen, D., and Schmidt, L. A Self-Contained Electro-Hydraulic Cylinder with Passive Load-Holding Capability. Energies. 12(2):292. doi:10.3390/en12020292
[34] Pawlus, W., Choux, M., and Hansen, M.R. (2016). Pawlus, W, , Choux, M., and Hansen, M.R. Hydraulic vs. electric: A review of actuation systems in offshore drilling equipment. Modeling, Identification and Control. 37(1). doi:10.4173/mic.2016.1.1
[35] Ristic, M. and Wahler, M. (2018). Ristic, M, and Wahler, M. Electrification of Hydraulics Opens New Ways for Intelligent Energy-Optimized Systems. In 11th International Fluid Power Conference. 2018. .
[36] Schmidt, L., Groenkjaer, M., Pedersen, H.C., and Andersen, T.O. (2017). Schmidt, L, , Groenkjaer, M., Pedersen, H.C., and Andersen, T.O. Position Control of an Over‐Actuated Direct Hydraulic Cylinder Drive. Control Engineering Practice. 64. doi:10.1016/j.conengprac.2017.04.003
[37] Schmidt, L., Roemer, D.B., Pedersen, H.C., and Andersen, T.O. (2015). Schmidt, L, , Roemer, D.B., Pedersen, H.C., and Andersen, T.O. Speed-Variable Switched Differential Pump System for Direct Operation of Hydraulic Cylinders. In ASME/BATH 2015 Symposium on Fluid Power and Motion Control. 2015. doi:10.1115/FPMC2015-9575
[38] Sorensen, J.K. (2016). Sorensen, J, K. Reduction of Oscillations in Hydraulically Actuated Knuckle Boom Cranes. Ph.D. thesis, University of Agder. .
[39] Stecki, J.S. and Garbacik, A. (2002). Stecki, J, S. and Garbacik, A. Design and Steady-state Analysis of Hydraulic Control Systems. Fluid Power Net Publications. .
[40] Williamson, C. and Ivantysynova, M. (2007). Williamson, C, and Ivantysynova, M. The effect of pump efficiency on displacement-controlled actuator systems. In Tenth Scandinavian International Conference on Fluid Power, Tampere, Finland. 2007. .


BibTeX:
@article{MIC-2019-2-2,
  title={{Enabling Energy Savings in Offshore Mechatronic Systems by using Self-Contained Cylinders}},
  author={Hagen, Daniel and Padovani, Damiano and Choux, Martin},
  journal={Modeling, Identification and Control},
  volume={40},
  number={2},
  pages={89--108},
  year={2019},
  doi={10.4173/mic.2019.2.2},
  publisher={Norwegian Society of Automatic Control}
};