“An EKF for Lie Groups with Application to Crane Load Dynamics”

Authors: Alexander Meyer Sjøberg and Olav Egeland,
Affiliation: NTNU
Reference: 2019, Vol 40, No 2, pp. 109-124.

Keywords: Line reconstruction, stereo vision, Lie groups, extended Kalman filter, pendulum

Abstract: An extended Kalman filter (EKF) for systems with configuration given by matrix Lie groups is presented. The error dynamics are given by the logarithm of the Lie group and are based on the kinematic differential equation of the logarithm, which is given in terms of the Jacobian of the Lie group. The probability distribution is also described in terms of the logarithm as a concentrated Gaussian distribution that is a tightly focused distribution around the identity of the Lie group. The filter is applied to estimation on SO(3) a case where a stereo camera setup tracks a crane wire with a payload. The wire, which is under tension and forms a line is monitored by two 2D-cameras, and a line detector is used to obtain a description of how the wire is projected onto each image plane. A model of a spherical pendulum is applied and the estimator is validated by applying it on simulated data, as well as experimental data.

PDF PDF (825 Kb)        DOI: 10.4173/mic.2019.2.3

DOI forward links to this article:
[1] Mark E. Petersen and Randal W. Beard (2021), doi:10.1109/CDC45484.2021.9683723
[2] Gennaro Mangiacapra, Matthew Wittal, Elisa Capello and Morad Nazari (2022), doi:10.1007/s11071-022-07293-x
[3] Lino Antoni Giefer (2021), doi:10.23919/FUSION49465.2021.9627044
[4] Weiwei Sun, Long Bai, Xinsheng Ge and Lili Xia (2022), doi:10.3390/app12104910
[5] Alexander Meyer Sjoberg and Olav Egeland (2022), doi:10.1109/TAC.2021.3121247
[6] Matthew M. Wittal, Brennan S. McCann and Morad Nazari (2023), doi:10.2514/6.2023-0700
[7] Brennan S. McCann, Morad Nazari, Matthew M. Wittal and Jeffrey Smith (2023), doi:10.2514/6.2023-2643
[8] Mark E. Petersen and Randal W. Beard (2023), doi:10.1109/TAES.2022.3214803
[9] Daniel-Ioan Stroe, Jun Qi, Lei Chen, Shunli Wang, Yangtao Wang, Yongcun Fan and Yuyang Liu (2023), doi:10.1016/B978-0-443-16160-5.00005-6
[10] S. Labsir, A. Giremus, B. Yver and T. Benoudiba Campanini (2024), doi:10.1016/j.sigpro.2023.109232
[11] Brennan S. McCann, Marco Fagetti, Morad Nazari, Matthew M. Wittal and Jeffrey D. Smith (2024), doi:10.1016/j.actaastro.2024.07.011
References:
[1] Abdel-Rahman, E.M., Nayfeh, A.H., and Masoud, Z.N. (2003). Abdel-Rahman, E, M., Nayfeh, A.H., and Masoud, Z.N. Dynamics and control of cranes: A review. Journal of Vibration and Control. 9:863--908. doi:10.1177/1077546303009007007
[2] Barfoot, T.D. and Furgale, P.T. (2014). Barfoot, T, D. and Furgale, P.T. Associating uncertainty with three-dimensional poses for use in estimation problems. IEEE Trans. Robotics. 30(3):679--693. doi:10.1109/TRO.2014.2298059
[3] Bisgaard, M., laCour-Harbo, A., Johnson, E.N., and Bendtsen, J.D. (2007). Bisgaard, M, , laCour-Harbo, A., Johnson, E.N., and Bendtsen, J.D. Vision aided state estimator for helicopter slung load system. IFAC Proceedings Volumes. 40(7):425--430. doi:10.3182/20070625-5-FR-2916.00073
[4] Bortz, J.E. (1970). Bortz, J, E. A new mathematical formulation for strapdown inertial navigation. IEEE Trans. Aerospace and Electronic Systems. AES-7(1):61--666. doi:10.1109/TAES.1971.310252
[5] Bourmaud, G., Megret, R., Arnaudon, M., and Giremus, A. (2015). Bourmaud, G, , Megret, R., Arnaudon, M., and Giremus, A. Continuous-discrete extended Kalman filter on matrix Lie groups using concentrated Gaussian distributions. Journal of Mathematical Imaging and Vision. 51(1):209--228. doi:10.1007/s10851-014-0517-0
[6] Bourmaud, G., Megret, R., Giremus, A., and Berthoumieu, Y. (2013). Bourmaud, G, , Megret, R., Giremus, A., and Berthoumieu, Y. Discrete extended Kalman filter on Lie groups. 21st European Signal Processing Conf. (EUSIPCO). .
[7] Brossard, M., Bonnabel, S., and Condomines, J.-P. (2017). Brossard, M, , Bonnabel, S., and Condomines, J.-P. Unscented filtering on Lie groups. In IROS 2017, EEE/RSJ International Conference on Intelligent Robots and Systems. 2017. doi:10.1109/IROS.2017.8206066
[8] Bullo, F. and Murray, R.M. (1995). Bullo, F, and Murray, R.M. Proportional Derivative (PD) Control on the Euclidean Group. CDS Technical Report 95-010, California Institute of Technology, 1995. .
[9] Cesic, J., Markovic, I., Bukal, M., and Petrovic, I. (2017). Cesic, J, , Markovic, I., Bukal, M., and Petrovic, I. Extended information filter on matrix Lie groups. Automatica. (82):226--234. doi:10.1016/j.automatica.2017.04.056
[10] Chirikjian, G.S. (2012). Chirikjian, G, S. Stochastic Models, Information Theory, and Lie Groups, Volume 2. Birkhäuser. .
[11] Crassidis, J.L. and Markley, F.L. (2003). Crassidis, J, L. and Markley, F.L. Unscented filtering for spacecraft attitude estimation. Journal of Guidance, Control, and Dynamics. 26(4):536--542. doi:10.2514/2.5102
[12] Crassidis, J.L., Markley, F.L., and Cheng, Y. (2007). Crassidis, J, L., Markley, F.L., and Cheng, Y. Survey of nonlinear attitude estimation methods. Journal of Guidance, Control, and Dynamics. 30(1):12--28. doi:10.2514/1.22452
[13] Crouch, P.E. and Grossman, R. (1993). Crouch, P, E. and Grossman, R. Numerical integration of ordinary differential equations on manifolds. Journal of Nonlinear Science. 3(1). doi:10.1007/BF02429858
[14] Dorst, L., Fontijne, D., and Mann, S. (2007). Dorst, L, , Fontijne, D., and Mann, S. Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. .
[15] Duda, R.O. and Hart, P.E. (1972). Duda, R, O. and Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM. 15(1):11–15. doi:10.1145/361237.361242
[16] Faraut, J. (2008). Faraut, J, Analysis on Lie Groups: An Introduction. Cambridge Studies in Advanced Mathematics. Cambridge University Press. doi:10.1017/CBO9780511755170
[17] Filipe, N., Kontitsis, M., and Tsiotras, P. (2015). Filipe, N, , Kontitsis, M., and Tsiotras, P. Extended Kalman filter for spacecraft pose estimation using dual quaternions. Journal of Guidance, Control, and Dynamics. 38(9):1625--1641. doi:10.1109/ACC.2015.7171823
[18] Hall, B.C. (2003). Hall, B, C. Lie Groups, Lie Algebras, and Representations. An Elementary Introduction. Graduate Texts in Mathematics. Springer, Berlin, Heidelberg, New York. .
[19] Hartley, R.I. and Zisserman, A. (2004). Hartley, R, I. and Zisserman, A. Multiple View Geometry in Computer Vision. Cambridge University Press, ISBN: 0521540518, second edition. .
[20] Inukai, T. and Yoshida, Y. (2012). Inukai, T, and Yoshida, Y. Control of a boom crane using installed stereo vision. 6th International Conference on Sensing Technology (ICST), 2012. doi:10.1109/ICSensT.2012.6461668
[21] Iserles, A., Munthe-Kaas, H., Norsett, S., and Zanna, A. (2005). Iserles, A, , Munthe-Kaas, H., Norsett, S., and Zanna, A. Lie-group methods. Acta Numerica. doi:10.1017/S0962492900002154
[22] Kim, Y.-S., Hong, K.-S., and Sul, S.-K. (2004). Kim, Y, -S., Hong, K.-S., and Sul, S.-K. Anti-sway control of container cranes: Inclinometer, observer, and state feedback. International Journal of Control, Automation and Systems, 2004. 2(4):435--449. .
[23] Klarsfeld, S. and Oteo, J.A. (1989). Klarsfeld, S, and Oteo, J.A. The Baker-Campbell-Hausdorff formula and the convergence of the Magnus expansion. J. Phys. A: Math. Gen.. 22:4565–4572. doi:10.1088/0305-4470/22/21/018
[24] Lefferts, E.J., Markley, F.L., and Shuster, M.D. (1982). Lefferts, E, J., Markley, F.L., and Shuster, M.D. Kalman filtering for spacecraft attitude estimation. Journal of Guidance, Control, and Dynamics. 5(5):417--429. doi:10.2514/3.56190
[25] Loianno, G., Watterson, M., and V., K. (2016). Loianno, G, , Watterson, M., and V., K. Visual inertial odometry for quadrotors on se(3). IEEE International Conference on Robotics and Automation (ICRA). pages 1544--1551. doi:10.1109/ICRA.2016.7487292
[26] Ma, Y., Soatto, S., Kosecka, J., and Sastry, S.S. (2003). Ma, Y, , Soatto, S., Kosecka, J., and Sastry, S.S. An Invitation to 3-D Vision: From Images to Geometric Models. SpringerVerlag. .
[27] Munthe-Kaas, H. (1995). Munthe-Kaas, H, Lie-butcher theory for runge-kutta methods. BIT Numerical Mathematics. 35(4):572--587. doi:10.1007/BF01739828
[28] Owren, B. and Marthinsen, A. (1999). Owren, B, and Marthinsen, A. Runge-kutta methods adapted to manifolds and based on rigid frames. BIT Numerical Mathematics. 39(1):116--142. doi:10.1023/A:1022325426017
[29] Park, F. (1995). Park, F, Distance metrics on the rigid-body motions with applications to mechanism design. J. Mechanical Design. 117(1):48--54. doi:10.1115/1.2826116
[30] Pittelkau, M.E. (2003). Pittelkau, M, E. Rotation vector in attitude estimation. Journal of Guidance, Control, and Dynamics. 26(6):855--860. doi:10.2514/2.6929
[31] Pottmann, H. and Wallner, J. (2001). Pottmann, H, and Wallner, J. Computational Line Geometry. Springer-Verlag, Berlin. .
[32] Rauscher, F., Nann, S., and Sawodny, O. (2018). Rauscher, F, , Nann, S., and Sawodny, O. Motion control of an overhead crane using a wireless hook mounted IMU. Annual American Control Conference (ACC), Milwaukee, USA, 2018. doi:10.23919/ACC.2018.8431170
[33] Semple, J.G. and Kneebone, G.T. (1952). Semple, J, G. and Kneebone, G.T. Algebraic projective geometry. Oxford Classic Series. Clarendon Press, Oxford. .
[34] Shen, J., Sanyal, A.K., Chaturvedi, N.A., Bernstein, D., and McClamroch, H. (2004). Shen, J, , Sanyal, A.K., Chaturvedi, N.A., Bernstein, D., and McClamroch, H. Dynamics and control of a 3d pendulum. 43rd IEEE Conference of Decision and Control. pages 323 -- 328. doi:10.1109/CDC.2004.1428650
[35] Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2008). Siciliano, B, , Sciavicco, L., Villani, L., and Oriolo, G. Robotics: Modelling, Planning and Control. Springer Publishing Company, Incorporated, 1st edition. .
[36] Wang, Y. and Chirikjian, G.S. (2006). Wang, Y, and Chirikjian, G.S. Error propagation on the Euclidean group with applications to manipulator kinematics. Trans. on Robotics. 22(4):591--602. doi:10.1109/TRO.2006.878978
[37] Wolfe, K.C., Mashner, M., and Chirikjian, G.S. (2011). Wolfe, K, C., Mashner, M., and Chirikjian, G.S. Bayesian fusion on Lie groups. Journal of Algebraic Statistics. 2(1):75--97. doi:10.18409/jas.v2i1.11


BibTeX:
@article{MIC-2019-2-3,
  title={{An EKF for Lie Groups with Application to Crane Load Dynamics}},
  author={Sjøberg, Alexander Meyer and Egeland, Olav},
  journal={Modeling, Identification and Control},
  volume={40},
  number={2},
  pages={109--124},
  year={2019},
  doi={10.4173/mic.2019.2.3},
  publisher={Norwegian Society of Automatic Control}
};