“Adaptive Moving Horizon Estimator for Return Flow Rate Estimation using Fluid Levels of a Venturi Channel”

Authors: Asanthi Jinasena and Roshan Sharma,
Affiliation: NTNU and University of South-Eastern Norway
Reference: 2020, Vol 41, No 2, pp. 79-90.

Keywords: adaptive estimation, flow estimation, return flow meter, friction factor, non-Newtonian, open flow, moving horizon estimator

Abstract: Real-time estimation of the return drilling fluid during oil well drilling is investigated in this study. Online fluid level measurements from a Venturi channel which can be placed on the return flowline is used with a model-based estimator. A reduced order, 1-D, mathematical equation is used for the open flow in the Venturi channel for Newtonian or non-Newtonian fluid types. The volumetric fluid flow rate is estimated using a moving horizon estimator in real-time. The friction factor is also estimated together with the fluid flow rate. The effect of the variation of the channel slope on the flow rate estimation induced by the vibration of the channel during its operation is also studied. The method requires only two level measurements in the Venturi channel together with the channel geometry. The method is validated using a laboratory scale Venturi flow system. The proposed method shows promising potential to be used as a real-time return flow rate measurement in conventional drilling systems.

PDF PDF (2289 Kb)        DOI: 10.4173/mic.2020.2.4

References:
[1] Alderman, N.J. and Haldenwang, R. (2007). Alderman, N, J. and Haldenwang, R. A review of Newtonian and non-Newtonian flow in rectangular open channels. In Hydrotransport 17: The 17th International Conference on the Hydraulic Transport of Solids. pages 1--20. .
[2] Baker, R.C. (2016). Baker, R, C. Flow Measurement Handbook: Industrial Designs, Operation Principles, Performance and Applications. Cambridge University Press, New York, 2nd edition. .
[3] Basu, S. (2019). Basu, S, Open-Channel Flow Measurement. In S.Basu, editor, Plant Flow Measurement and Control Handbook, chapter III, pages 257--331. Academic Press. doi:10.1016/B978-0-12-812437-6.00003-2
[4] Boiten, W. (2002). Boiten, W, Flow Measurement Structures. Flow Measurement and Instrumentation. 13(5-6):203--207. doi:10.1016/S0955-5986(02)00057-2
[5] Burger, J., Haldenwang, R., and Alderman, N. (2010). Burger, J, , Haldenwang, R., and Alderman, N. Friction factor-Reynolds number relationship for laminar flow of non-Newtonian fluids in open channels of different cross-sectional shapes. Chemical Engineering Science. 65(11):3549--3556. doi:10.1016/j.ces.2010.02.040
[6] Burger, J.H., Haldenwang, R., and Alderman, N.J. (2015). Burger, J, H., Haldenwang, R., and Alderman, N.J. Laminar and Turbulent Flow of Non-Newtonian Fluids in Open Channels for Different Cross-Sectional Shapes. Journal of Hydraulic Engineering, 2015. 141(4):04014084--1--12. doi:10.1061/(ASCE)HY.1943-7900.0000968
[7] Burger, J.H., Haldenwang, R., Chhabra, R.P., and Alderman, N.J. (2015). Burger, J, H., Haldenwang, R., Chhabra, R.P., and Alderman, N.J. Power law and composite power law friction factor correlations for laminar and turbulent non-Newtonian open channel flow. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015. 37(2):601--612. doi:10.1007/s40430-014-0188-1
[8] Chanson, H. (2004). Chanson, H, The Hydraulics of Open Channel Flow: An Introduction. Elsevier Butterworth-Heinemann, Burlington, 2nd edition. doi:10.1061/(ASCE)0733-9429(2001)127:3(246)
[9] Chaudhry, M.H. (2008). Chaudhry, M, H. Open-Channel Flow. Springer, New York, 2nd edition. .
[10] Chhantyal, K. (2018). Chhantyal, K, Sensor Data Fusion based Modelling of Drilling Fluid Return Flow through Open Channels. Phd, University of South-Eastern Norway. .
[11] Chhantyal, K., Viumdal, H., and Mylvaganam, S. (2017). Chhantyal, K, , Viumdal, H., and Mylvaganam, S. Online Drilling Fluid Flowmetering in Open Channels with Ultrasonic Level Sensors using Critical Depths. In Proceedings of the 58th Conference on Simulation and Modelling (SIMS 58). Linkoping University Electronic Press, Reykjavik, Iceland, pages 385--390. doi:10.3384/ecp17138385
[12] Chow, V.T. (1959). Chow, V, T. Open-Channel Hydraulics. McGraw-Hill, New York. .
[13] French, R.H. (1985). French, R, H. Open-Channel Hydraulics. McGraw-Hill, New York. .
[14] Haldenwang, R. and Slatter, P. (2006). Haldenwang, R, and Slatter, P. Experimental procedure and database for non-Newtonian open channel flow. Journal of Hydraulic Research. 44(2):283--287. doi:10.1080/00221686.2006.9521682
[15] Haldenwang, R., Slatter, P., and Chhabra, R. (2002). Haldenwang, R, , Slatter, P., and Chhabra, R. Laminar and transitional flow in open channels for non-newtonian fluids. In Hydrotransport 15: 15th international conference on the hydraulic transport of solids in pipes. Banff, pages 755--768. .
[16] Haldenwang, R., Slatter, P.T., Chhabra, R.P., Haldenwang, R., Slatter, P., and Chhabra, R. (2010). Haldenwang, R, , Slatter, P.T., Chhabra, R.P., Haldenwang, R., Slatter, P., and Chhabra, R. An experimental study of non-Newtonian fluid flow in rectangular flumes in laminar, transition and turbulent flow regimes. Journal of the South African Institution of Civil Engineering, 2010. 52(1):11--19. .
[17] Haseltine, E.L. and Rawlings, J.B. (2005). Haseltine, E, L. and Rawlings, J.B. Critical evaluation of extended Kalman filtering and moving-horizon estimation. Industrial and Engineering Chemistry Research. 44(8):2451--2460. doi:10.1021/ie034308l
[18] Henderson, F.M. (1966). Henderson, F, M. Open Channel Flow. Macmillan Publishing Co., New York. .
[19] (2013 (2013). (2013), .
[20] Jinasena, A., Ghaderi, A., and Sharma, R. (2018). Jinasena, A, , Ghaderi, A., and Sharma, R. Modeling and Analysis of Fluid Flow through A Non-Prismatic Open Channel with Application to Drilling. Modeling, Identification and Control. 39(4):261--272. doi:10.4173/mic.2018.4.3
[21] Jinasena, A., Kaasa, G.-O., and Sharma, R. (2017). Jinasena, A, , Kaasa, G.-O., and Sharma, R. Use of Orthogonal Collocation Method for a Dynamic Model of the Flow in a Prismatic Open Channel : For Estimation Purposes. In Proceedings of the 58th Conference on Simulation and Modelling (SIMS 58). Linkoping University Electronic Press, Linkopings universitet, Reykjavik, Iceland, pages 90--96. doi:10.3384/ecp1713890
[22] Jinasena, A., Kaasa, G.-O., and Sharma, R. (2019). Jinasena, A, , Kaasa, G.-O., and Sharma, R. Improved Real–Time Estimation of Return Flow Rate of Drilling Fluids by Model Adaptation for Friction Parameter. IEEE Sensors Journal. 19(20):9314--9323. doi:10.1109/jsen.2019.2923854
[23] Jinasena, A. and Sharma, R. (2018). Jinasena, A, and Sharma, R. Model based Real--Time Flow Rate Estimation in Open Channels with Application to Conventional Drilling. In 18th International Conference on Control, Automation and Systems (ICCAS 2018). PyeongChang, GangWon, Korea, pages 546--551. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE07549683, .
[24] Kozicki, W. and Tiu, C. (1967). Kozicki, W, and Tiu, C. Non-Newtonian flow through open channels. The Canadian Journal of Chemical Engineering. 45(3):127--134. doi:10.1002/cjce.5450450302
[25] Kurganov, A. (2018). Kurganov, A, Finite-volume schemes for shallow-water equations. Acta Numerica. 27:289--351. doi:10.1017/S0962492918000028
[26] Nocedal, J. and Wright, S.J. (2006). Nocedal, J, and Wright, S.J. Numerical Optimization. Springer, 2nd edition. .
[27] Pirir, I., Jinasena, A., and Sharma, R. (2017). Pirir, I, , Jinasena, A., and Sharma, R. Model based flow measurement using venturi flumes for return flow during drilling. Modeling, Identification and Control. 38(3):135--142. doi:10.4173/mic.2017.3.3
[28] Rao, C.V., Rawlings, J.B., and Mayne, D.Q. (2003). Rao, C, V., Rawlings, J.B., and Mayne, D.Q. Constrained State Estimation for Nonlinear Discrete-Time Systems: Stability and Moving Horizon Approximations. IEEE Transactions on Automatic Control. 48(2):246--258. doi:10.1109/TAC.2002.808470
[29] Rawlings, J.B., Mayne, D.Q., and Diehl, M.M. (2017). Rawlings, J, B., Mayne, D.Q., and Diehl, M.M. Model Predictive Control: Theory, Computation and Design. Nob Hill Publishing, Wisconsin, 2nd edition. .


BibTeX:
@article{MIC-2020-2-4,
  title={{Adaptive Moving Horizon Estimator for Return Flow Rate Estimation using Fluid Levels of a Venturi Channel}},
  author={Jinasena, Asanthi and Sharma, Roshan},
  journal={Modeling, Identification and Control},
  volume={41},
  number={2},
  pages={79--90},
  year={2020},
  doi={10.4173/mic.2020.2.4},
  publisher={Norwegian Society of Automatic Control}
};