“An analysis of Model Predictive Control with Integral Action applied to Digital Displacement Cylinders”

Authors: Viktor Hristov Donkov, Torben Ole Andersen and Morten K. Ebbesen,
Affiliation: Aalborg University and University of Agder
Reference: 2020, Vol 41, No 3, pp. 223-239.

Keywords: Model Predictive Control, Digital Displacement Cylinders, Optimization

Abstract: This article aims to analyze Model Predictive Control (MPC) for the control of multi-chamber cylinders. MPC with and without integral action has been introduced. Three different algorithms have been used to solve the optimization problem in the MPC. The different algorithms have been compared with an industrial solver. The influence of changing mass, choosing a different middle line pressure, system delays, signal noise, velocity estimation, and changing pressure levels has been investigated. It is concluded that for the small prediction horizon used in the paper a simple algorithm such as A* can produce results as good as the previously used Differential Evolution algorithm in less than half the time. It is further concluded that unknown software delays and unknown changes in mass have the largest effect on system performance.

PDF PDF (1495 Kb)        DOI: 10.4173/mic.2020.3.6

References:
[1] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., etal. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trendsregistered in Machine learning, 2011. 3(1):1--122. doi:10.1561/2200000016
[2] Cortes, P., Rodriguez, J., Silva, C., and Flores, A. (2012). Delay compensation in model predictive current control of a three-phase inverter, IEEE Transactions on Industrial Electronics. 59(2):1323--1325. doi:10.1109/TIE.2011.2157284
[3] Donkov, V., Andersen, T., Ebbesen, M.K., Linjama, M., and Paloniitty, M. (2019). Investigation of the fault tolerance of digital hydraulic cylinders, In The 16th Scandinavian International Conference on Fluid Power, SICFP. 2019.
[4] Donkov, V., Andersen, T.O., Ebbesen, M.K., and Pedersen, H.C. (2017). Applying digital hydraulic technology on a knuckle boom crane, In The Ninth Workshop on Digital Fluid Power. 2017.
[5] Donkov, V.H., Andersen, T.O., Pedersen, H.C., and Ebbesen, M.K. (2018). Application of model predictive control in discrete displacement cylinders to drive a knuckle boom crane, In 2018 Global Fluid Power Society PhD Symposium (GFPS). IEEE, pages 408--413. doi:10.1109/GFPS.2018.8472363
[6] Gaines, B.R., Kim, J., and Zhou, H. (2018). Algorithms for fitting the constrained lasso, Journal of Computational and Graphical Statistics. 27(4):861--871. doi:10.1080/10618600.2018.1473777
[7] Hansen, A.H., Asmussen, M.F., and Bech, M.M. (2017). Energy optimal tracking control with discrete fluid power systems using model predictive control, In Proceedings of the Ninth Workshop on Digital Fluid Power, Aalborg, Denmark. pages 7--8.
[8] Hansen, A.H., Asmussen, M.F., and Bech, M.M. (2018). Model predictive control of a wave energy converter with discrete fluid power power take-off system, Energies. 11(3):635. doi:10.3390/en11030635
[9] Hansen, R.H., Andersen, T.O., and Perdersen, H.C. (2011). Analysis of discrete pressure level systems for wave energy converters, In Fluid Power and Mechatronics (FPM), 2011 International Conference on. IEEE, pages 552--558. doi:10.1109/FPM.2011.6045825
[10] Heybroek, K. and Sjoeberg, J. (2018). Model predictive control of a hydraulic multichamber actuator: A feasibility study, IEEE/ASME Transactions on Mechatronics. 23(3):1393--1403. doi:10.1109/TMECH.2018.2823695
[11] HoCho, S., Niemi-Pynttari, O., and Linjama, M. (2016). Friction characteristics of a multi-chamber cylinder for digital hydraulics, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 230(5):685--698. doi:10.1177/0954406215575414
[12] Huova, M., Laamanen, A., and Linjama, M. (2010). Energy efficiency of three-chamber cylinder with digital valve system, International Journal of Fluid Power. 11(3):15--22. doi:10.1080/14399776.2010.10781011
[13] Linjama, M., Vihtanen, H., Sipola, A., and Vilenius, M. (2009). Secondary controlled multi-chamber hydraulic cylinder, In The 11th Scandinavian International Conference on Fluid Power, SICFP, volume9. pages 2--4.
[14] Lofberg, J. (2004). Yalmip : A toolbox for modeling and optimization in matlab, In In Proceedings of the CACSD Conference. Taipei, Taiwan, 2004. doi:10.1109/CACSD.2004.1393890
[15] Stephens, M.A., Manzie, C., and Good, M.C. (2013). Model predictive control for reference tracking on an industrial machine tool servo drive, IEEE Transactions on Industrial Informatics. 9(2):808--816. doi:10.1109/TII.2012.2223222
[16] Storn, R. (1995). Differrential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, Technical report, International Computer Science Institute, 1995. 11. doi:10.1023/A:1008202821328


BibTeX:
@article{MIC-2020-3-6,
  title={{An analysis of Model Predictive Control with Integral Action applied to Digital Displacement Cylinders}},
  author={Donkov, Viktor Hristov and Andersen, Torben Ole and Ebbesen, Morten K.},
  journal={Modeling, Identification and Control},
  volume={41},
  number={3},
  pages={223--239},
  year={2020},
  doi={10.4173/mic.2020.3.6},
  publisher={Norwegian Society of Automatic Control}
};