“Backstepping based controller utilizing a sliding mode disturbance observer”

Authors: Ioannis Manganas, Lasse Schmidt, Torben Ole Andersen and Henrik C. Pedersen,
Affiliation: Aalborg University
Reference: 2023, Vol 44, No 1, pp. 31-42.

Keywords: Hydraulics, Backstepping Control, Nonlinear, Servo System

Abstract: Hydraulic servo systems are characterized by nonlinear dynamics that can render control design challenges. Controllers for a linearized model will typically be conservative, and the stability of the closed loop system, in the Lyapunov sense, may be difficult to prove. On the contrary, the backstepping technique can lead to control algorithms for which stability margins can be estimated. However, these tend to be complex algorithms that are difficult to apply. In this paper, the backstepping control design procedure is applied to a hydraulically actuated robot. A sliding mode disturbance observer is utilized to avoid the high complexity of the backstepping algorithm. The paper's primary focus is hence on proving the stability of the proposed algorithm and its applicability to a laboratory setup. However, ways to improve performance are also discussed. Finally, results are presented where the designed controller is tested in both simulations and applied to the laboratory setup, and compared to linear controllers.

PDF PDF (2956 Kb)        DOI: 10.4173/mic.2023.1.3

References:
[1] Ahn, K.K., Nam, D. N.C., and Jin, M. (2014). Adaptive backstepping control of an electrohydraulic actuator, IEEE/ASME Transactions on Mechatronics. 19(3):987--995. doi:10.1109/TMECH.2013.2265312
[2] Andersen, T., Pedersen, H., Bech, M., and Schmidt, L. (2015). A low order adaptive control scheme for hydraulic servo systems, In 2015 International Conference on Fluid Power and Mechatronics (FPM). Harbin, China, pages 1148--1152.
[3] Bakhshande, F. and Söffker, D. (2017). Robust control approach for a hydraulic differential cylinder system using a proportional-integral-observer-based backstepping control, In 2017 American Control Conference (ACC). Seattle, WA, USA, pages 3102--3107.
[4] Bech, M.M., Andersen, T.O., Pedersen, H.C., and Schmidt, L. (2013). Experimental evaluation of control strategies for hydraulic servo robot, In 2013 IEEE International Conference on Mechatronics and Automation. Takamatsu, Japan, pages 342--347.
[5] Choux, M. (2011). Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems, Ph.D. thesis, Technical University of Denmark.
[6] Choux, M. and Hovland, G. (2010). Adaptive backstepping control of nonlinear hydraulic-mechanical system including valve dynamics, Modeling Identification and Control - MODEL IDENT CONTR. 31(1):35--44. doi:10.4173/mic.2010.1.3
[7] Choux, M., Hovland, G., and Blanke, M. (2012). Cascade controller including backstepping for hydraulic-mechanical systems, IFAC Proceedings Volumes. 45(8):310--315. doi:10.3182/20120531-2-NO-4020.00046
[8] Guan, C. and Pan, S. (2008). Nonlinear adaptive robust control of single-rod electro-hydraulic actuator with unknown nonlinear parameters, IEEE Transactions on Control Systems Technology. 16(3):434--445. doi:10.1109/TCST.2007.908195
[9] Jelali, M. and Kroll, A. (2002). Hydraulic Servo-systems: Modelling, Identification and Control, Springer London.
[10] Kaddissi, C., Kenne, J.P., and Saad, M. (2007). Identification and real-time control of an electrohydraulic servo system based on nonlinear backstepping, IEEE/ASME Transactions on Mechatronics. 12(1):12--22. doi:10.1109/TMECH.2006.886190
[11] Krstic, M., Kokotovic, P.V., and Kanellakopoulos, I. (1995). Nonlinear and Adaptive Control Design, John Wiley & Sons, Inc.
[12] Liu, R. and Alleyne, A. (1999). Nonlinear force/pressure tracking of an electro-hydraulic actuator, IFAC Proceedings Volumes. 32(2):952--957. doi:10.1016/S1474-6670(17)56160-1
[13] Mattila, J., Koivumäki, J., G.Caldwell, D., and Semini, C. (2017). A survey on control of hydraulic robotic manipulators with projection to future trends, IEEE/ASME Transactions on Mechatronics. 22:669--680. doi:10.1109/TMECH.2017.2668604
[14] Schmidt, T. (2012). Adaptiv Backstepping Kontrol af Asymmetrisk Elektro-Hydraulisk System, Master's thesis, Aalborg University.
[15] Sirouspour, M.R. and Salcudean, S.E. (2000). On the nonlinear control of hydraulic servo-systems, In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). San Francisco, CA, USA, pages 1276--1282 vol.2.
[16] Spong, M. and Vidyasagar, M. (1989). Robot Dynamics And Control, Wiley.
[17] Ursu, I., Ursu, F., and Popescu, F. (2006). Backstepping design for controlling electrohydraulic servos, Journal of the Franklin Institute. 343(1):94--110. doi:10.1016/j.jfranklin.2005.09.003
[18] Yao, B., Bu, F., and Chiu, G. T.C. (2001). Non-linear adaptive robust control of electro-hydraulic systems driven by double-rod actuators, International Journal of Control. 74(8):761--775. doi:10.1080/002071700110037515
[19] Yao, B., Bu, F., Reedy, J., and Chiu, G. T.C. (1999). Adaptive robust motion control of single-rod hydraulic actuators: Theory and experiments, In Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251). San Diego, CA, USA, pages 759--763 vol.2.


BibTeX:
@article{MIC-2023-1-3,
  title={{Backstepping based controller utilizing a sliding mode disturbance observer}},
  author={Manganas, Ioannis and Schmidt, Lasse and Andersen, Torben Ole and Pedersen, Henrik C.},
  journal={Modeling, Identification and Control},
  volume={44},
  number={1},
  pages={31--42},
  year={2023},
  doi={10.4173/mic.2023.1.3},
  publisher={Norwegian Society of Automatic Control}
};