“Subspace System Identification of a Pilot Tunnel System of a Combined Sewage System”
Authors: Yongjie Wang and Finn Haugen,Affiliation: University of South-Eastern Norway
Reference: 2023, Vol 44, No 2, pp. 69-82.
Keywords: Urban drainage systems, subspace system identification, drainage tunnel, model-based control, Saint-Venant equations
Abstract: This paper presents an investigation into the potential use of subspace identification methods (SIMs) for model-based control of urban drainage systems (UDS) that play a crucial role in collecting and transporting stormwater runoff and domestic sewage to Water Resource Recovery Facilities (WRRF) in urban areas. To evaluate the feasibility of level control using model-based algorithms in UDS, a pilot tunnel system was constructed. Three linear state-space models were identified using the system identification toolbox in MATLAB and an open-source module in Python named SIPPY. The study finds that the identified models can predict the system output with acceptable accuracy thus for model-based control of the system. The findings of this study aim to contribute to the development of more efficient and effective control strategies for UDS.

DOI forward links to this article:
[1] Rodrigo da Silva Gesser, Holger Voos, Alex Cornelissen and Georges Schutz (2024), doi:10.1016/j.heliyon.2024.e31831 |
[1] AakreHaugen, F. (2018). Simulations and real applications of PI and MPC averaging level control in a water resource recovery facility, In Proceedings of The 59th Conference on Simulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway. pages 297--302. doi:10.3384/ecp18153297
[2] Armenise, G., Vaccari, M., DiCapaci, R.B., and Pannocchia, G. (2018). An Open-Source System Identification Package for Multivariable Processes, In 2018 UKACC 12th International Conference on Control (CONTROL). IEEE, Sheffield, pages 152--157. doi:10.1109/CONTROL.2018.8516791
[3] Breckpot, M., Agudelo, O.M., and DeMoor, B. (2012). Model Predictive Control applied to a river system with two reaches, In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC). IEEE, Maui, HI, USA, pages 4549--4554. doi:10.1109/CDC.2012.6426501
[4] Cen, L., Xi, Y., and Li, D. (2010). Aggregation-based model predictive control of open channel networks, In Proceedings of the 29th Chinese Control Conference. IEEE, pages 3170--3175. https://ieeexplore.ieee.org/abstract/document/5572239.
[5] Chanson, H. (2004). Hydraulics of open channel flow, Elsevier. doi:10.1016/B978-0-7506-5978-9.X5000-4
[6] DiRuscio, D. (1997). Subspace system identification: Theory and applications, Lecture notes, Telemark University College, Porsgrunn, Norway, 1997. http://davidr.no/iia2217/pensum/main_00.pdf.
[7] DiRuscio, D. (2001). Model predictive control and optimization, Lecture notes, System and Control Engineering Department of Technology Telemark University College. https://web01.usn.no/davidr/sce4106/syllabus/main_mpc.pdf.
[8] DiRuscio, D. and Foss, B. (1998). On state space model based predictive control, IFAC Proceedings Volumes. 31(11):301--306. Publisher: Elsevier. doi:10.1016/S1474-6670(17)44945-7
[9] García, C.E., Prett, D.M., and Morari, M. (1989). Model predictive control: Theory and practice—A survey, Automatica. 25(3):335--348. doi:10/br9kgh
[10] Igreja, J.M., Cadete, F.M., and Lemos, J.M. (2011). Application of distributed model predictive control to a water delivery canal, In 2011 19th Mediterranean Conference on Control & Automation (MED). IEEE, Corfu, Greece, pages 682--687. doi:10/fgwvjh
[11] Kamboh, S.A., Sarbini, I.N., Labadin, J., and Eze, M.O. (2016). Simulation of 2D Saint-Venant equations in open channel by using MATLAB, Journal of IT in Asia. 5(1):15--22. doi:10/ghcsm9
[12] Kurganov, A. and Levy, D. (2002). Central-Upwind Schemes for the Saint-Venant System, ESAIM: Mathematical Modelling and Numerical Analysis. 36(3):397--425. doi:10.1051/m2an:2002019
[13] Kurganov, A. and Petrova, G. (2007). A Second-Order Well-Balanced Positivity Preserving Central-Upwind Scheme for the Saint-Venant System, Communications in Mathematical Sciences. 5(1):133--160. doi:10.4310/CMS.2007.v5.n1.a6
[14] Litrico, X. and Fromion, V. (2009). Modeling and control of hydrosystems, Springer, London. doi:10.1007/978-1-84882-624-3
[15] Ljung, L. (1998). System identification, In A.Procházka, J.Uhlíř, P.W.J. Rayner, and N.G. Kingsbury, editors, Signal analysis and prediction, pages 163--173. Birkhäuser Boston, Boston, MA. doi:10.1007/978-1-4612-1768-8_11
[16] Ljung, L. (1999). System identification: theory for the user, Prentice Hall information and system sciences series. Prentice Hall PTR, Upper Saddle River, NJ, 2nd ed edition. doi:10.1016/S0005-1098(01)00214-X
[17] Lund, N. S.V., Falk, A. K.V., Borup, M., Madsen, H., and SteenMikkelsen, P. (2018). Model predictive control of urban drainage systems: A review and perspective towards smart real-time water management, Critical Reviews in Environmental Science and Technology, 2018. 48(3):279--339. doi:10.1080/10643389.2018.1455484
[18] MathWorks. (2023). Loss Function and Model Quality Metrics, 2023. https://se.mathworks.com/help/ident/ug/model-quality-metrics.html.
[19] MATLAB. (2023). System Identification Toolbox version: 10, 0 (r2022b). 2023. https://www.mathworks.com.
[20] Muroi, H. and Adachi, S. (2015). Model Validation Criteria for System Identification in Time Domain, IFAC-PapersOnLine. 48(28):86--91. doi:10.1016/j.ifacol.2015.12.105
[21] Ocampo-Martinez, C., Puig, V., Cembrano, G., and Quevedo, J. (2013). Application of Predictive Control Strategies to the Management of Complex Networks in the Urban Water Cycle, IEEE Control Systems Magazine. 33(1):15--41. doi:10.1109/MCS.2012.2225919
[22] Pannocchia, G. and Calosi, M. (2010). A predictor form PARSIMonious algorithm for closed-loop subspace identification, Journal of Process Control. 20(4):517--524. doi:10.1016/j.jprocont.2010.01.004
[23] Qin, S.J. (2006). An overview of subspace identification, Computers & Chemical Engineering. 30(10-12):1502--1513. doi:10.1016/j.compchemeng.2006.05.045
[24] Qin, S.J., Lin, W., and Ljung, L. (2005). A novel subspace identification approach with enforced causal models, Automatica. 41(12):2043--2053. doi:10.1016/j.automatica.2005.06.010
[25] Qin, S.J. and Ljung, L. (2003). Closed-loop subspace identification with innovation estimation, IFAC Proceedings Volumes. 36(16):861--866. doi:10.1016/S1474-6670(17)34868-1
[26] SciPy.org. (2023). scipy, signal.dlsim. 2023. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlsim.html.
[27] VanOverschee, P. and DeMoor, B. (1996). Subspace Identification for Linear Systems, Springer US, Boston, MA. doi:10.1007/978-1-4613-0465-4
[28] Xu, M., Negenborn, R., van Overloop, P., and vande Giesen, N. (2012). De Saint-Venant equations-based model assessment in model predictive control of open channel flow, Advances in Water Resources. 49:37--45. ZSCC: 0000029. doi:10/f4d992
[29] Xu, M., van Overloop, P., and vande Giesen, N. (2011). On the study of control effectiveness and computational efficiency of reduced Saint-Venant model in model predictive control of open channel flow, Advances in Water Resources. 34(2):282--290. doi:10.1016/j.advwatres.2010.11.009
[30] Yang, H.-C. and Chang, F.-J. (2005). Modelling combined open channel flow by artificial neural networks, Hydrological Processes. 19(18):3747--3762. doi:10.1002/hyp.5858
BibTeX:
@article{MIC-2023-2-3,
title={{Subspace System Identification of a Pilot Tunnel System of a Combined Sewage System}},
author={Wang, Yongjie and Haugen, Finn},
journal={Modeling, Identification and Control},
volume={44},
number={2},
pages={69--82},
year={2023},
doi={10.4173/mic.2023.2.3},
publisher={Norwegian Society of Automatic Control}
};