“Optimal Control Architecture for Balancing Performance and Cost in Oil and Gas Production Systems”

Authors: Kushila Jayamanne and Bernt Lie,
Affiliation: University of South-Eastern Norway
Reference: 2024, Vol 45, No 3, pp. 81-95.

Keywords: Control architecture, Optimal design, Multi-objective optimization, Pareto optimal

Abstract: In the domain of process design, stakeholders pursue two interrelated yet potentially conflicting objectives: maximization of system performance and reduction of plant cost. The control architecture of a process not only determines the cost of the system, but also significantly influences its potential performance. Nevertheless, conventional processes for designing control architectures prioritize economic objectives while overlooking system performance. This paper introduces a systematic approach that integrates both these objectives simultaneously into the design of control architectures for oil and gas production systems. The method involves quantifying the trade-off between controllability, observability, and the cost associated with the control architecture. This quantification is posed as a multi-objective integer nonlinear programming problem, which is specified as a Pareto optimization problem. Solving this optimization problem yields a set of Pareto-optimal control architectures, enabling design engineers to explore optimal trade-offs between cost and performance. The efficacy of the proposed procedure is demonstrated through a real-world oil field example. Pareto-optimal architectures for the oil field are found using the developed framework. Subsequent analysis of the results reveals the indispensability of physical sensors for certain variables and the importance of well-balanced sensor distributions among the different wells in the oil field. To assess the impact of different architectures on closed-loop control performance, linear quadratic Gaussian (LQG) controllers are designed. Comparisons are made between the performance of LQG control systems instantiated on the identified Pareto-optimal architectures and non-optimal alternatives. This comparison highlights the pivotal role of optimal architectures in simultaneously enhancing performance and minimizing costs.

PDF PDF (1368 Kb)        DOI: 10.4173/mic.2024.3.1

References:
[1] Antoniades, C. and Christofides, P.D. (2000). Computation of optimal actuator locations for nonlinear controllers in transport-reaction processes, Computers & Chemical Engineering. 24(2-7):577--583. doi:10.1016/S0098-1354(00)00412-9
[2] Bruant, I., Gallimard, L., and Nikoukar, S. (2010). Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm, Journal of Sound and Vibration. 329(10):1615--1635. doi:10.1016/j.jsv.2009.12.001
[3] Cha, Y.-J., Agrawal, A.K., Kim, Y., and Raich, A.M. (2012). Multi-objective genetic algorithms for cost-effective distributions of actuators and sensors in large structures, Expert Systems with Applications. 39(9):7822--7833. doi:10.1016/j.eswa.2012.01.070
[4] Darivandi, N., Morris, K., and Khajepour, A. (2013). An algorithm for LQ optimal actuator location, Smart Materials and Structures. 22(3):035001. doi:10.1088/0964-1726/22/3/035001
[5] Doyle, J. and Stein, G. (1979). Robustness with observers, IEEE Transactions on Automatic Control. 24(4):607--611. doi:10.1109/TAC.1979.1102095
[6] Doyle, J. and Stein, G. (1981). Multivariable feedback design: Concepts for a classical/modern synthesis, IEEE Transactions on Automatic Control. 26(1):4--16. doi:10.1109/TAC.1981.1102555
[7] Flynn, E.B. and Todd, M.D. (2010). A Bayesian approach to optimal sensor placement for structural health monitoring with application to active sensing, Mechanical Systems and Signal Processing. 24(4):891--903. doi:10.1016/j.ymssp.2009.09.003
[8] Georges, D. (1995). The use of observability and controllability gramians or functions for optimal sensor and actuator location in finite-dimensional systems, In Proceedings of 1995 34th IEEE Conference on Decision and Control, volume4. IEEE, New Orleans, LA, USA, pages 3319--3324, 1995. doi:10.1109/CDC.1995.478999
[9] Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Pub. Co, Reading, Mass.
[10] Goodwin, G.C., Graebe, S.F., Salgado, M.E., and Goodwin, G.C. (2001). Control System Design, Prentice Hall, Upper Saddle River, NJ.
[11] Hac, A. and Liu, L. (1993). Sensor And Actuator Location In Motion Control Of Flexible Structures, Journal of Sound and Vibration. 167(2):239--261. doi:10.1006/jsvi.1993.1333
[12] Hiramoto, K., Doki, H., and Obinata, G. (2000). Optimal sensor/actuator placement for active vibration control using explicit solution of algebraic Riccati equation, Journal of Sound and Vibration. 229(5):1057--1075. doi:10.1006/jsvi.1999.2530
[13] Jayamanne, K.R. (2021). Optimal Operation of Processes Under Uncertainty Using Robust Model Predictive Control, Ph.D. thesis, University of South-Eastern Norway. https://hdl.handle.net/11250/2765105.
[14] Kookos, I.K. and Perkins, J.D. (1999). A Systematic Method for Optimum Sensor Selection in Inferential Control Systems, Industrial & Engineering Chemistry Research. 38(11):4299--4308. doi:10.1021/ie9902737
[15] Leleu, S., Abou-Kandil, H., and Bonnassieux, Y. (2000). Piezoelectric actuators and sensors location for active control of flexible structures, In Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference [Cat. No. 00CH37.
[16] Li, Y., Wang, X., Huang, R., and Qiu, Z. (2015). Actuator placement robust optimization for vibration control system with interval parameters, Aerospace Science and Technology. 45:88--98. doi:10.1016/j.ast.2015.04.017
[17] Lie, B. (1995). Attainable Performance in LQG Control, In R.Berber, editor, Methods of Model Based Process Control, pages 263--295. Springer Netherlands, Dordrecht. doi:10.1007/978-94-011-0135-6_11
[18] Lim, K.B. (1992). Method for optimal actuator and sensor placement for large flexible structures, Journal of Guidance, Control, and Dynamics. 15(1):49--57. doi:10.2514/3.20800
[19] Luyben, M. and Floudas, C. (1994). Analyzing the interaction of design and controlemdash 1, A multiobjective framework and application to binary distillation synthesis. Computers & Chemical Engineering. 18(10):933--969. doi:10.1016/0098-1354(94)E0013-D
[20] Ma, Y., Gowda, S., Anantharaman, R., Laughman, C., Shah, V., and Rackauckas, C. (2021). ModelingToolkit: A Composable Graph Transformation System For Equation-Based Modeling, 2021. doi:10.48550/ARXIV.2103.05244
[21] Manohar, K., Brunton, B.W., Kutz, J.N., and Brunton, S.L. (2018). Data-Driven Sparse Sensor Placement for Reconstruction: Demonstrating the Benefits of Exploiting Known Patterns, IEEE Control Systems. 38(3):63--86. doi:10.1109/MCS.2018.2810460
[22] Manohar, K., Kutz, J.N., and Brunton, S.L. (2022). Optimal Sensor and Actuator Selection Using Balanced Model Reduction, IEEE Transactions on Automatic Control. 67(4):2108--2115. doi:10.1109/TAC.2021.3082502
[23] Milosevic, B. and Begovic, M. (2003). Nondominated sorting genetic algorithm for optimal phasor measurement placement, IEEE Transactions on Power Systems. 18(1):69--75. doi:10.1109/TPWRS.2002.807064
[24] Mitchell, M. (1998). An Introduction to Genetic Algorithms, The MIT Press. doi:10.7551/mitpress/3927.001.0001
[25] Muller, P. and Weber, H. (1972). Analysis and optimization of certain qualities of controllability and observability for linear dynamical systems, Automatica. 8(3):237--246. doi:10.1016/0005-1098(72)90044-1
[26] Munz, U., Pfister, M., and Wolfrum, P. (2014). Sensor and Actuator Placement for Linear Systems Based on H_2 and H_infty Optimization, IEEE Transactions on Automatic Control. 59(11):2984--2989. doi:10.1109/TAC.2014.2351673
[27] Muske, K.R. and Georgakis, C. (2003). Optimal measurement system design for chemical processes, AIChE Journal. 49(6):1488--1494. doi:10.1002/aic.690490612
[28] Paris, R., Beneddine, S., and Dandois, J. (2023). Reinforcement-learning-based actuator selection method for active flow control, Journal of Fluid Mechanics. 955:A8. doi:10.1017/jfm.2022.1043
[29] Pequito, S., Kar, S., and Aguiar, A.P. (2016). A Framework for Structural Input/Output and Control Configuration Selection in Large-Scale Systems, IEEE Transactions on Automatic Control. 61(2):303--318. doi:10.1109/TAC.2015.2437525
[30] Semaan, R. (2017). Optimal sensor placement using machine learning, Computers & Fluids. 159:167--176. doi:10.1016/j.compfluid.2017.10.002
[31] Sen, P., Sen, K., and Diwekar, U.M. (2016). A multi-objective optimization approach to optimal sensor location problem in IGCC power plants, Applied Energy. 181:527--539. doi:10.1016/j.apenergy.2016.08.006
[32] Sharma, R., Fjalestad, K., and Glemmestad, B. (2011). Modeling and control of gas lifted oil field with five oil wells, In 52nd International Conference of Scandinavian Simulation Society, SIMS. pages 29--30.
[33] Skogestad, S. and Wolff, E.A. (1996). Controllability measures for disturbance rejection, Modeling, Identification and Control: A Norwegian Research Bulletin. 17(3):167--181. doi:10.4173/mic.1996.3.1
[34] Stein, G. and Athans, M. (1987). The LQG/LTR procedure for multivariable feedback control design, IEEE Transactions on Automatic Control. 32(2):105--114. doi:10.1109/TAC.1987.1104550
[35] Summers, T.H. and Lygeros, J. (2014). Optimal Sensor and Actuator Placement in Complex Dynamical Networks, IFAC Proceedings Volumes. 47(3):3784--3789. doi:10.3182/20140824-6-ZA-1003.00226
[36] Van DeWal, M. and DeJager, B. (2001). A review of methods for input/output selection, Automatica. 37(4):487--510. doi:10.1016/S0005-1098(00)00181-3
[37] Yang, C., Lu, Z., and Yang, Z. (2018). Robust optimal sensor placement for uncertain structures with interval parameters, IEEE Sensors Journal. 18(5):2031--2041. doi:10.1109/JSEN.2018.2789523


BibTeX:
@article{MIC-2024-3-1,
  title={{Optimal Control Architecture for Balancing Performance and Cost in Oil and Gas Production Systems}},
  author={Jayamanne, Kushila and Lie, Bernt},
  journal={Modeling, Identification and Control},
  volume={45},
  number={3},
  pages={81--95},
  year={2024},
  doi={10.4173/mic.2024.3.1},
  publisher={Norwegian Society of Automatic Control}
};