“Optimizing PID Controller Design for Rotor Systems Suspended by Active Magnetic Bearings”
Authors: Ibrahim Abubakar, Atte Putkonen, Marek Rehtla, Tuomo Lindh, Stijn Derammelaere and Niko Nevaranta,Affiliation: Lappeenranta University of Technology and University of Antwerp
Reference: 2024, Vol 45, No 3, pp. 105-114.
Keywords: Active Magnetic Bearing, PID control, Multiobjective optimization
Abstract: In many industrial applications, one of the primary advantages of using PID-based controllers is their simplicity, tunability, and ease of implementation. However, in the case of high-speed machines with magnetically suspended rotor systems, the stabilizing control solution often involves combining PID controllers with supporting filter structures. Depending on the case, this can lead to controllers with a significant number of tunable parameters, ranging from 10 to 35, which can be a challenging task when done manually. Therefore, a multiobjective genetic algorithm optimization is proposed in this paper to seek an optimal configuration for the controller parameters. This paper concentrates on optimizing PID-based controllers for AMB-suspended rotor systems, aiming to enable the analysis of outcomes within a standardized framework. Thus, the closed-loop performance is evaluated by the obtained damping properties and robustness. Moreover, an experimental AMB-rotor system is used to assess the performance of the controllers.
PDF (2217 Kb) DOI: 10.4173/mic.2024.3.3
References:
[1] AgeesKumar, C. and KesavanNair, N. (2011). Multi-objective pi controller design with an application to speed control of permanent magnet dc motor drives, In 2011 International Conference on Signal Processing, Communication, Computing and Networking Technologies. pages 424--429. doi:10.1109/ICSCCN.2011.6024588
[2] Gaidhane, P.J., Kumar, A., and Nigam, M.J. (2017). Tuning of two-dof-fopid controller for magnetic levitation system: A multi-objective optimization approach, In 2017 6th International Conference on Computer Applications In Electrical Engineering-Recent Advances (CERA). pages 479--484. doi:10.1109/CERA.2017.8343377
[3] Hutterer, M., Hofer, M., and Schrödl, M. (2015). Decoupled control of an active magnetic bearing system for a high gyroscopic rotor, In 2015 IEEE Int. Conf. on Mechatronics (ICM). pages 210--215, 2015. doi:10.1109/ICMECH.2015.7083976
[4] Hutterer, M. and Schroedl, M. (2022). Stabilization of active magnetic bearing systems in the case of defective sensors, IEEE/ASME Transactions on Mechatronics. 27(5):3672--3682. doi:10.1109/TMECH.2021.3131224
[5] Hutterer, M. and Schrödl, M. (2023). Modeling and mu-synthesis control of a flexible rotor stabilized by active magnetic bearings including current free control, Journal of Sound and Vibration. 546:117439. doi:https://doi.org/10.1016/j.jsv.2022.117439
[6] Jaatinen, P., Vuojolainen, J., Nevaranta, N., Jastrzebski, R., and Pyrhönen, O. (2019). Control System Commissioning of Fully Levitated Bearingless Machine, Modeling, Identification and Control. 40(1):27--39. doi:10.4173/mic.2019.1.3
[7] Jastrzebski, R.P., Hynynen, K.M., and Smirnov, A. (2010). hinfty control of active magnetic suspension, Mechanical Systems and Signal Processing. 24(4):995--1006. doi:https://doi.org/10.1016/j.ymssp.2009.10.008
[8] Jastrzebski, R.P., Kurvinen, E., and Pyrhönen, O. (2019). Design, modelling and control of mimo amb system with 3 radial bearing planes for megawatt-range high-speed rotor, In 2019 IEEE International Electric Machines & Drives Conference (IEMDC). pages 805--811. doi:10.1109/IEMDC.2019.8785378
[9] Lantto, E. (1999). Robust Control of Magnetic Bearings in Subcritical Machines, Ph.D. thesis.
[10] Liu, B., Sjöberg, J., and Laiho, A. (2016). Optimization-based radial active magnetic bearing controller design and verification for flexible rotors, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 230(4):339--351. doi:10.1177/0959651815621675
[11] Meng, L. and Xue, D. (2009). Design of an optimal fractional-order pid controller using multi-objective ga optimization, In 2009 Chinese Control and Decision Conference. pages 3849--3853. doi:10.1109/CCDC.2009.5191796
[12] Nevaranta, N., Jaatinen, P., Vuojolainen, J., Sillanpää, T., and Pyrhönen, O. (2020). Adaptive mimo pole placement control for commissioning of a rotor system with active magnetic bearings, Mechatronics. 65:102313. doi:https://doi.org/10.1016/j.mechatronics.2019.102313
[13] Nevaranta, N., Shishkov, A., Abubakar, I., Putkonen, A., Rehtla, M., Ranjan, G., and Lindh, T. (2023). Neural networks for data-driven modeling of active magnetic bearing suspended rotor system, In 2023 IEEE 6th Student Conference on Electric Machines and Systems (SCEMS). pages 1--6. doi:10.1109/SCEMS60579.2023.10379332
[14] Noshadi, A., Shi, J., Lee, W.S., Shi, P., and Kalam, A. (2016). System identification and robust control of multi-input multi-output active magnetic bearing systems, IEEE Transactions on Control Systems Technology. 24(4):1227--1239. doi:10.1109/TCST.2015.2480009
[15] Polajzer, B., Ritonja, J., Stumberger, G., Dolinar, D., and Lecointe, J.-P. (2016). Decentralized pi/pd position control for active magnetic bearings, Electrical Engineering. 89(1):53--59. doi:10.1007/s00202-005-0315-1
[16] Sahinkaya, A. and Sawicki, J.T. (2020). Computationally efficient implementation of robust controllers in active magnetic bearing systems, Mechanical Systems and Signal Processing. 144:106902. doi:https://doi.org/10.1016/j.ymssp.2020.106902
[17] Schmied, J. and Kosenkov, A. (2013). Practical controller design for rotors on magnetic bearings by means of an efficient simulation tool, volume Volume 7B: Structures and Dynamics of Turbo Expo: Power for Land, Sea, and Air. 2013. doi:10.1115/GT2013-95075
[18] Seiler, P., Packard, A., and Gahinet, P. (2020). An introduction to disk margins [lecture no, .
[19] Villarreal-Cervantes, M. (2017). Approximate and widespread pareto solutions in the structure-control design of mechatronic systems, J Optim Theory Appl. 173:628--657. doi:10.1007/s10957-016-1053-4
[20] Wei, C. (2015). Controller design and optimization for rotor system supported by active magnetic bearings, 2015. https://api.semanticscholar.org/CorpusID:191554570.
[21] Wei, C. and Söffker, D. (2012). Improving pid-control of amb-rotor system design i: Optimization strategy, In 13th Int. Symp. on Magnetic Bearings 2012. pages 1--15, 2012.
[22] Wei, C. and Söffker, D. (2012). Improving pid-control of amb-rotor system design ii: Experimental results, In 13th Int. Symp. on Magnetic Bearings 2012. pages 1--8, 2012.
[23] Wei, C. and Söffker, D. (2016). Optimization strategy for pid-controller design of amb rotor systems, IEEE Transactions on Control Systems Technology. 24(3):788--803. doi:10.1109/TCST.2015.2476780
[24] Zhang, S.Y., Wei, C.B., Li, J., and Wu, J.H. (2017). Robust hinfty controller based on multi-objective genetic algorithms for active magnetic bearing applied to cryogenic centrifugal compressor, In 2017 29th Chinese Control And Decision Conference (CCDC). pages 46--51. doi:10.1109/CCDC.2017.7978064
BibTeX:
@article{MIC-2024-3-3,
title={{Optimizing PID Controller Design for Rotor Systems Suspended by Active Magnetic Bearings}},
author={Abubakar, Ibrahim and Putkonen, Atte and Rehtla, Marek and Lindh, Tuomo and Derammelaere, Stijn and Nevaranta, Niko},
journal={Modeling, Identification and Control},
volume={45},
number={3},
pages={105--114},
year={2024},
doi={10.4173/mic.2024.3.3},
publisher={Norwegian Society of Automatic Control}
};