“Antiswing Control and Trajectory Planning for Offshore Cranes: Design and Experiments”

Authors: Ronny Landsverk, Jing Zhou and Daniel Hagen,
Affiliation: University of Agder
Reference: 2024, Vol 45, No 4, pp. 115-126.

Keywords: Antiswing control, crane control, modeling, trajectory planning, iterative learning

Abstract: In offshore environments, safe management of heavy payloads requires precise crane operations to avoid collisions with obstacles and adjacent equipment. Uncontrolled residual swinging of suspended payloads can quickly evolve into high-risk situations, which, if left unchecked, might lead to significant equipment failures and associated costs. This paper explores a control methodology designed specifically to eliminate payload swing in offshore cranes. We present a trajectory tracking technique explicitly crafted for swing suppression under control, rooted in the principles of the iterative learning algorithm and based on physics. The proposed antiswing control strategy guarantees asymptotic convergence of the payload's swing, angular velocity, and angular acceleration to desired values. The method was tested on a Comau robot mounted on a Stewart platform at the Norwegian Motion Laboratory. Simulation and experimental results comparing payload transfers with and without applying the anti-swing control method validates it's effectiveness.

PDF PDF (3822 Kb)        DOI: 10.4173/mic.2024.4.1

References:
[1] Agostini, M., Parker, G., Groom, K., Schaub, H., and Robinett, R. (2002). Command Shaping and Closed-Loop Control Interactions for a Ship Crane, Proceedings of the 2002 American Control Conf.. 5:2298--2304. doi:10.1109/ACC.2002.1023983
[2] Alici, G., Kapucu, S., and Bayseç, S. (1999). Swing-free transportation of suspended objects with robot manipulators, Robotica. 17(5):513–521. doi:10.1017/S0263574799001666
[3] Chen, H. and Sun, N. (2022). An Output Feedback Approach for Regulation of 5-DOF Offshore Cranes with Ship Yaw and Roll Perturbations, IEEE Transactions on Industrial Electronics. 69(2):1705--1716. doi:10.1109/TIE.2021.3055159
[4] Cibicik, A., Tysse, G., and Egeland, O. (2019). Determination of Reaction Forces of a Deck Crane in Wave Motion Using Screw Theory, Journal of Offshore Mechanics and Arctic Engineering. 141:1--12. doi:10.1115/1.4043701
[5] Ellerman, K., Kreuzer, E., and Markiewitcz, M. (2002). Nonlinear Dynamics of Floating Cranes, Nonlinear Dynamics. 27:377--387. doi:10.1023/A:1014256405213
[6] Fang, Y., Wang, P., Sun, N., and Zhang, Y. (2014). Dynamic Analysis and Nonlinear Control of an Offshore Boom Crane, IEEE Transactions on Industrial Electronics. pages 414--426. doi:10.1109/TIE.2013.2251731
[7] Gao, J., Wang, L., Gao, R., and Huang, J. (2019). Adaptive control of uncertain underactuated cranes with a non-recursive control scheme, Journal of the Franklin Institute. 356(18):11305--11317. doi:10.1016/j.jfranklin.2019.08.009
[8] Gürsel, A., Kapucu, S., and Bayseç, S. (2000). On preshaped reference inputs to reduce swing of suspended objects transported with robot manipulators, Mechatronics. 10(6):609--626. doi:10.1016/S0957-4158(99)00092-6
[9] Huang, J., Wang, W., and Zhou, J. (2022). Adaptive Control Design for Underactuated Cranes With Guaranteed Transient Performance: Theoretical Design and Experimental Verification, IEEE Transactions on Industrial Electronics. 69(3):2822--2832. doi:10.1109/TIE.2021.3065835
[10] Landsverk, R., Zhou, J., Hovland, G., and Zhang, H. (2020). Modeling of Offshore Crane and Marine Craft in Wave Motion, 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). pages 1463--1470. doi:10.1109/ICIEA48937.2020.9248110
[11] Lu, B., Fang, Y., Sun, N., and Wang, X. (2018). Antiswing Control of Offshore Boom Cranes with Ship Roll Distrurbances, IEEE Transactions on Control Systems Technology. pages 740--747. doi:10.1109/TCST.2017.2679060
[12] N.Sun, Y.Z., Y.Fang and Ma, B. (2012). A Novel Kinematic Coupling-Based Trajectory Planning Method for Overhead Cranes, IEEE Transactions on Mechatronics. doi:10.1109/TMECH.2010.2103085
[13] Qian, Y. and Fang, Y. (2016). Dynamic Analysis of an Offshore Ship-mounted Crane Subject to Sea Wave Disturbances, IEEE World Congress on Intelligent Control and Automation, 2016. pages 1251--1256. doi:10.1109/WCICA.2016.7578629
[14] Sun, N. and Fang, Y. (2014). An efficient online trajectory generating method for underactuated crane systems, Int. J. Robust Nonlinear Control. 24:1653--1663. doi:10.1002/rnc.2953
[15] Sun, N., Wu, Y., Fang, Y., and Chen, H. (2018). Nonlinear Antiswing Control for Crane Systems with Double-Pendulum Swing Effects and Uncertain Parameters: Design and Experiments, IEEE Transactions on Automation Science and Engineering. 15(3):1413--1412. doi:10.1109/TASE.2017.2723539
[16] Sun, N., Wu, Y., and Xiao, L. (2019). Nonlinear Stable Transportation Control for Double-Pendulum Shipboard Cranes with Ship-Motion-Induced Disturbances, IEEE Transactions on Industrial Electronics, 2019. 66(12):9467--9479. doi:10.1109/TIE.2019.2893855
[17] Sun, N., Yang, T., Chen, H., Fang, Y., and Qian, Y. (2019). Adaptive anti-awing and positioning control for 4-dof rotary cranes subject to uncertain/unknown parameters with hardware experiments, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019. 49:1309--1321. doi:10.1109/TSMC.2017.2765183
[18] Tysse, G. and Egeland, O. (2018). Dynamic Interaction of a Heavy Crane and a Ship in Wave Motion, Modeling, Identification and Control. 39:45--60. doi:10.4173/mic.2018.2.1
[19] Tørdal, S., Olsen, J., and Hovland, G. (2018). The Norwegian Motion-Laboritory, Modeling, Identification and Control. 39:191--208. doi:10.4173/mic.2018.3.5


BibTeX:
@article{MIC-2024-4-1,
  title={{Antiswing Control and Trajectory Planning for Offshore Cranes: Design and Experiments}},
  author={Landsverk, Ronny and Zhou, Jing and Hagen, Daniel},
  journal={Modeling, Identification and Control},
  volume={45},
  number={4},
  pages={115--126},
  year={2024},
  doi={10.4173/mic.2024.4.1},
  publisher={Norwegian Society of Automatic Control}
};