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E-mail: selcuksultan@gmail.com; sultansutlu@halic.edu.tr

Abstract

In this paper, we study stabilization problem on a model for covid-19 by using Routh-Hurwitz criterion
and Gershgorin circles. Using Routh-Hurwitz criterion, we prove the necessity of unstability and stability
conditions for the model that we extend from an existing one. We give the necessary conditions for stability
on this model by using the Gershgorin Circle Theorem and give examples.
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1 Introduction

In this work, we study stability problem on a model for
covid-19 by using Routh-Hurwitz criterion and Gersh-
gorin circles. The model that we study in this paper
can also be considered for any other infectious diseases.

Chronic or autoimmune diseases such as cancer and
diabetes are described as the diseases of our age. How-
ever, infectious diseases still remain a problem for all
humanity. Recently, epidemic diseases and their effects
have come to the fore again with the coronavirus out-
break. The mathematical theory of infectious diseases
and epidemics has always been interesting for many
branches of science. Research on this subject has ac-
celerated as it has become even more interesting with
the covid-19 epidemic, which has affected almost the
whole world in recent years.

It has been observed that it is very important to
be able to predict the future behavior of the disease
in terms of understanding the spread, termination, or
general effects of infectious diseases on the population

they infect. In this regard, it is clear that mathemati-
cal modeling of epidemics as dynamical systems is very
useful for controlling epidemics, interpreting and re-
ducing their consequences.

The first mathematical model and formalization
in epidemiology was written by Daniel Bernoulli for
smallpox in 1760, Bernoulli (1766). In Dietz and
Heesterbeek (2002), Bernoulli’s work is revisited in
modern mathematical language and dynamics divided
into two disjoint compartments: the suspectibles and
immunes. Besides, it can be said that a deterministic
model literally started in the 20th century. In the arti-
cle Kermack and Mckendrick (1927), a general theory
for infectious diseases was given using ordinary differ-
ential equation systems, and mathematical epidemiol-
ogy has shown an exponential development since then.
Enormous varity of mathematical models have been
put forward for many infectious diseases, and their an-
alyzes and various applications have been made, Het-
hcote (2000).

Mathematical models are generally expressed with
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abbreviated names such as SI, SIR, SIS, SEI, SIS, SIRS,
SEIS, SIRS, SEIR, SEIRS by dividing the population
into various groups. S indicates the susceptible class, I
is the class of infectives, E is the class of exposed, R is
the class of recovered individuals. There are also mod-
els that include classes representing individuals hos-
pitalized with H, individuals vaccinated with V, intu-
bated class with N and classes M representing infants
with passive immunity.

In our work, we use XEIHR model which we extend
and modify from a model given in Koker and Gozukizil
(2021), where we denote by X the population class, E
the class of exposed, I the class of infectives, H the
hospitalized class and R the class of recovered individ-
uals.

This paper consists of six sections. In the second
section, we explain our model which is extended and
modified by the model given in Koker and Gozukizil
(2021). In the third section, we study stabilization
problem on our extended model for covid-19 by using
Routh-Hurwitz criterion, prove the necessity of unsta-
bility and stability conditions for this model and we
finish the section with two examples. In the fourth
section, we give the necessary conditions for stability
on our extended model by using the Gershgorin Circle
Theorem, and two examples of unstability and stability
on our model, respectively. We give the discussion in
the fifth section and lastly the conclusion of the paper.

2 An extended model for Covid-19

In this section, we want to explain the dynamical sys-
tem that we use for studying the stabilization problem.
We consider the model of covid-19 given in Koker and
Gozukizil (2021) by the following family of differential
equations with some modifications on the parameter γ
by taking as all real numbers and on one class, and
we denote the system of these differential equations by
(1):

dX

dt
= λ∗ − µX − βXE

dE

dt
= βXE − ϵEI − µE

dI

dt
= ϵEI − (µ+ ω + γ)I

dH

dt
= ωI − (µ+ α+ δ)H

dR

dt
= γI + δH − µR

(1)

Here, X(t) denotes the population, E(t) is the ex-
posed class, I(t) is the infected (infectious) class, H(t)

is the hospitalized class and R(t) is the recovered class.
About parameters, λ∗ is the birth rate per capita, µ
is the natural death rate per capita, α is the average
death rate from the covid-19 virus, β is the rate which
moves from the population to the exposed class, ϵ is
the rate of progression from exposure to infection, ω
is the rate at which the infected become hospitalized,
γ is the rate of recovery of those infected and δ is the
recovery rate of hospitalized patients. In Koker and
Gozukizil (2021), the authors consider H(t) as the in-
tubated (severely ill) class which is denoted by N(t)
and all parameters are positive.

We have the diagram in Figure 1. which corresponds
to equations (1)

In this work, we consider a hospitalized class H
(not necessary intubated) and γ ∈ R. In this model,
γ has three possibilities, where positive case goes di-
rectly to the recovered class, negative case goes to
the hospitalized class and if it is zero it remains in
the same class. The disease-free equilibrium point is
E0 = (λ

∗

µ , 0, 0, 0, 0)

In Koker and Gozukizil (2021), the authors give the

reproduction number βλ∗

µ2 which is the dominant eigen-

value of the matrix FV −1, where F and V are the
following matrices:

F =

βX 0 0
0 0 0
0 0 0

 (2)

and

V =

µ 0 0
0 µ+ ω + γ 0
0 −ω µ+ α+ γ

 (3)

Here, we calculate details due to the fact that we will
use some outcomes through the calculation.

Let x = (E, I,H) = (x1, x2, x3). Then, we have the
following two matrices from the differential equations
given above:

F =

βXE
0
0

 (4)

and

V =

 ϵEI + µE
−ϵEI + (µ+ ω + γ)I
−ωI + (µ+ α+ γ)H

 (5)

such that
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Figure 1: Schematic Diagram of the Model

dx

dt
= F(x1, x2, x3)− V(x1, x2, x3) (6)

=

βXx1

0
0

−

 ϵx1x2 + µx1

−ϵx1x2 + (µ+ ω + γ)x2

−ωx2 + (µ+ α+ γ)x3

 (7)

Hence, F is the Jacobian matrix of F and V is the
Jacobian matrix of V at the disease-free equilibrium
point E0. Moreover,

V −1 =


1
µ 0 0

0 1
µ+ω+γ 0

0 ω
(µ+ω+γ)(µ+α+γ)

1
µ+α+γ

 (8)

which implies µ+ α+ γ = 1.

The reproduction number is independent of the hos-
pitalized class H and in the following section, we will
consider this information for the differential equations.

3 Routh-Hurwitz Criterion
Approach for Stabilization

In this section, we study the stabilization of the model
that we explain above by using Routh-Hurwitz crite-
rion. We know that the reproduction number is in-
dependent of w. Therefore, we reduce the dynamical
system which corresponds to (1) to the disease area
out of the hospital class H for stabilization and con-
sider the system of the following equations which we
denote by (9)

dX

dt
= λ∗ − µX − βX

dE

dt
= βXE − ϵEI − µEE

dI

dt
= ϵEI − (µ+ γ)I

(9)

Then, the Jacobian matrix Jac(X,E, I) is equal to−µ− βE −βX 0
βE βX − ϵI − µ −ϵE
0 ϵI ϵE − (µ+ γ)

 (10)

The disease-free equilibrium point is E∗
0 = (λ

∗

µ , 0, 0),
and the Jacobian matrix at this point is

Jac(E∗
0 )
(X,E, I) =

−µ −βλ∗

µ 0

0 βλ∗

µ − µ 0

0 0 −(µ+ γ)

 .

(11)
Then, the characteristic polynomial will be

|λI3 − Jac(E∗
0 )
(X,E, I)| = λ3 + (3µ− βλ∗

µ
+ γ)λ2+

(3µ2 − 2βλ∗ − βλ∗γ

µ
+2µγ)λ− βλ∗(µ+ γ)+µ3 +µ2γ,

(12)

where I3 is the 3× 3 identity matrix.

3.1. Corollary:

Let us consider the system of equations (9) . If
βλ∗ > µ2, then the dynamical system defined by these
equations is unstable at the disease-free equilibrium
point E∗

0 = (λ
∗

µ , 0, 0), so is the dynamical system de-

fined by (1) .

Proof: According to the necessary conditions for
Routh-Hurwitz criterion all coefficients have to have
the same sign and for our case they all have to be at
positive sign. Therefore, −βλ∗(µ+ γ) + µ3 + µ2γ < 0
implies unstability of the system.

3.2. Theorem:

If βλ∗ < µ2, then the dynamical system defined by
(10) is stable at the disease-free equilibrium point E∗

0 =
(λ

∗

µ , 0, 0).
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Proof: We have the following table by using the char-
acteristic polynomial:

λ3 : 1 3µ2 − 2βλ∗ − βλ∗γ
µ + 2µγ

λ2 : 3µ− βλ∗

µ + γ −βλ∗(µ+ γ) + µ3 + µ2γ

λ1 : a1 a2
λ0 : b1 b2

and with simple calculation we get

a1 =
(3µ2 − 2βλ∗ − βλ∗γ

µ + 2µγ)(3µ− βλ∗

µ + γ)

3µ− β λ∗

µ + γ

+
βλ∗(µ+ γ)− µ3 − µ2γ

3µ− β λ∗

µ + γ

b1 =
a1(−βλ∗(µ+ γ) + µ3 + µ2γ)

a1
a2 = 0

b2 = 0

By the Routh-Hurwitz criterion, elements in the first
column of the table should have the same sign. To
show that 3µ − βλ∗

µ + γ > 0 for stability, we use the
first condition and have the following:

3µ2 − βλ∗ + γµ > 2µ2 + γµ > 0. (13)

In fact, µ > 0 and µ+ γ > 0. In order to have a1 as
a positive number, it is enough to guarantee that

3µ2 − 2βλ∗ − βλ∗γ

µ
+ 2µγ > 0 (14)

By using the first condition, we can write

3µ2 − 2βλ∗ − βλ∗γ

µ
+ 2µγ > µ2 + µγ. (15)

b1 > 0 and the proof is complete.

3.3. Example:

Let us consider a dynamical system governed by the
following differential equations:

dX

dt
=

1

10
− 2X −XE

dE

dt
= XE − EI − 2E

dI

dt
= EI − I

(16)

Then, the Jacobian matrix at the disease-free equi-
librium point is

Jac(E∗
0 )
(X,E, I) =

−2 − 1
20 0

0 − 39
20 0

0 0 −1

 (17)

and the characteristic polynomial is

|λI3−Jac(E∗
0 )
(X,E, I)| = λ3+

99

20
λ2+

157

20
λ+

39

10
(18)

By the Routh-Hurwitz criterion, we have the follow-
ing table:

λ3 : 1 157
20

λ2 : 99
20

39
10

λ1 : a1 a2
λ0 : b1 b2

(19)

and with simple calculation we get a1 =
7.062̄1, a2 = 0, b1 = 3.9 and b2 = 0.

Since all the elements in the first column of the table
are positive, this system is stable at the disease-free
equilibrium point (E∗

0 ).

In this example, we can see that the stability of the
system is directly related with the square of the natu-
ral death rate per capita (µ) as being strictly greater
than the multiplication of the birth rate per capita (λ∗)
and the rate which moves from the population to the
exposed class (β).

3.4. Example:

In this example, we use the Turkey’s data of 03.07.2021
given in the reference Koker and Gozukizil (2021) and
consider the dynamical system governed by the follow-
ing differential equations:

dX

dt
= 0.013− 0.053X − 0.078XE

dE

dt
= 0.078XE − 0.023EI − 0.053E

dI

dt
= 0.023EI − 0.94I

(20)

Then, the Jacobian matrix at the disease-free equi-
librium point E∗

0 = (0.245, 0, 0) is
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Jac(E∗
0 )
(X,E, I) =

−0.053 −0.019 0
0 −0.034 0
0 0 −0.94


(21)

and the characteristic polynomial is

|λI3−Jac(E∗
0 )
(X,E, I)| = λ3+1.027λ2+0.084λ+0.002

(22)

By the Routh-Hurwitz criterion, we have the follow-
ing table:

λ3 : 1 0.084
λ2 : 1.027 0.002
λ1 : a1 a2
λ0 : b1 b2

and with simple calculation we get a1 = 0.082, a2 =
0, b1 = 0.002 and b2 = 0.

Since all the elements in the first column of the table
are positive, this system is stable at the disease-free
equilibrium point (E∗

0 ).

4 Examples of Gershgorin Circles
for Unstability and Stability

In this section, we study examples for stability and
unstability for the dynamical system determined by the
(9) differential equations. We know that the Jacobian
matrix at the disease-free equilibrium point is

Jac(E∗
0 )
(X,E, I) =

−µ −βλ∗

µ 0

0 βλ∗

µ − µ 0

0 0 −(µ+ γ)


(23)

By the Corollary of Gershgorin Circle Theorem,
Adom-Konadu et al. (2022), we have the following re-
sult.

4.1 Corollary:

If µ > −γ and µ > βλ∗

µ , then the eigenvalues of

Jac(E∗
0 )
(X,E, I) matrix are negative or have negative

real parts.

Moreover, it is proved in Bejarano et al. (2018) that,
if the Jacobian matrix of the dynamical system deter-
mined by the (9) at the disease-free equilibrium point
is strictly diagonally dominant, then by the Gershgorin

Circle Theorem the disease-free equilibrium point is lo-
cally asymptotically stable.

4.2. Example:

Let us consider a dynamical system governed by the
following differential equations:

dX

dt
=

1

9
− 2X − 1

2
XE

dE

dt
=

1

2
XE − EI − 2EE

dI

dt
= EI + I

(24)

Then, the Jacobian matrix at the disease-free equi-
librium point is

Jac(E∗
0 )
(X,E, I) =

−2 − 1
36 0

0 − 71
36 0

0 0 1

 (25)

Here, one of the eigenvalues of Jac(E∗
0 )
(X,E, I) ma-

trix is positive. In fact, µ = 2 < −γ = −(−3). Then,
the system is unstable at the disease-free equilibrium
point E∗

0 .

In this example, we can see that the unstability of the
system is directly related with the sum of the natural
death rate per capita (µ) and the rate of recovery of
those infected (γ) which is stricly negative, that is, the
absolute value of the rate of recovery of those infected
has to be strictly greater than the natural death rate
per capita.

Gershgorin circle is drawn in the following

−3 −2 −1 1 2

−1

1

2

Figure 2: Gershgorin circles of unstable system in 4.2
Example

We can see that one of the eigenvalues lies on the
right of the x-axis. Here, we use approximated numbers
so that circle can be seen since some numbers are too
small to illustrate.
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4.3. Example:

Let us consider a dynamical system governed by the
following differential equations:

dX

dt
=

1

9
− 1

3
X − 1

2
XE

dE

dt
=

1

2
XE − EI − 1

3
E

dI

dt
= EI − 8

15
I

(26)

Then, the Jacobian matrix at the disease-free equi-
librium point is

Jac(E∗
0 )
(X,E, I) =

− 1
3 − 1

6 0
0 − 1

6 0
0 0 − 8

15

 (27)

Here, µ = 1
3 > −γ = − 1

5 and µ = 1
3 > βλ∗

µ = 1
6 (i.e.;

the reproduction number βλ∗

µ2 = 1
2 < 1) and all the

eigenvalues of Jac(E∗
0 )
(X,E, I) matrix are negative. It

follows that the disease-free equilibrium point E∗
0 is

locally asymptotically stable, Bejarano et al. (2018).

In the contrary of the previous example, we can see
that the locally asymptotically stability of the system is
directly related with the sum of the natural death rate
per capita (µ) and the rate of recovery of those infected
(γ) which is positive, that is, the natural death rate per
capita has to be strictly greater than the absolute value
of the rate of recovery of those infected.

Two of the Gershgorin circles are degenerate circles
in this example, too, and all of them are drawn as
follows;

−3 −2 −1 1 2

−1

1

2

Figure 3: Gershgorin circles of stable system in 4.3 Ex-
ample

and we can see that all of the eigenvalues lie on the left
of the x-axis.

Eigenvalues play a crucial role for Gershgorin circles
and therefore for unstability and local asymptotically
stability decision of the dynamical systems. In this sec-
tion we illustrated these two cases, i.e., unstability and
local asymptotically stability decision by two examples.

5 Discussion

One of the biggest concerns with any infectious disease
is its ability to spread through a population and epi-
demic diseases and their effects have come to the fore
again with the coronavirus outbreak. Mathematical
modeling of epidemics as dynamical systems is very
useful for controlling epidemics, interpreting and re-
ducing their consequences. Therefore, we study sta-
bility problem on our XEIHR model which we extend
and modify from a model given in Koker and Gozuk-
izil (2021), where we denote by X the population class,
E the class of exposed, I the class of infectives, H the
hospitalized class and R the class of recovered individ-
uals. We use Routh- Hurwitz criterion to prove the
necessity of unstability and stability conditions for our
model since it is a classical approach for this kind of
systems and easy to predict on numerical examples.
We use the Turkey’s data of 03.07.2021 given in the
reference Koker and Gozukizil (2021) as well as ran-
domly chosen numerical data in examples. Although
this provides the opportunity for comparison with real-
world data, the data here is limited for generalizations
in our world. Nevertheless, we characterize mathemati-
cally so that anyone who has interest can calculate with
her/his data and our results are good contribution to
the area. Moreover, we give the necessary conditions
for stability on our extended model by using the Gersh-
gorin Circle Theorem, and we draw geometrically the
Gershgorin circles which are degenerate circles in two
examples one unstability and another stability in our
model, respectively. This kind of models can also be
considered for any other infectious diseases.

6 Conclusion

In this work, we studied stability problem using
XEIHR model which we extended and modified from
the model given in Koker and Gozukizil (2021), using
Routh- Hurwitz criterion and Gershgorin circles. Here,
X is the population class, E is the class of exposed, I is
the class of infectives, H is the hospitalized class and
R is the class of recovered individuals. We considered
the first three equations for the Routh- Hurwitz cri-
terion, since the reproduction number is independent
of the hospitalized class H, and calculated the charac-
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teristic polynomial of the Jacobian matrix. Then, we
characterized unstability and stability for this dynam-
ical system (9) . In order to prove these characteriza-
tions, we used Routh- Hurwitz criterion. We finished
this section by giving two examples that one with ran-
domly chosen numerical data and the other one with
the Turkey’s data of 03.07.2021 given in the reference
Koker and Gozukizil (2021). In the fourth section, we
gave the necessary conditions for stability on the dy-
namical system (9) by using the Gershgorin Circle
Theorem, and finished the study with two examples
with randomly chosen numerical data for unstability
and stability on our model, respectively. Finally, we
discussed our results and examples.
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Hernández, E. A stability test for non lin-
ear systems of ordinary differential equations
based on the gershgorin circles. Contemporary
Engineering Science, 2018. 11(91):4541–4548.
doi:10.12988/ces.2018.89504.

Bernoulli, D. Essai d’une nouvelle analyse de la mor-
talite causee par la petite verole. Mem. Math. Phys.
Acad. Roy.Sci., Paris, 1766. pages 1, (Reprinted
in: L.P. Bouckaert, B.L. van der Waerden (Eds.),

Die Werke von Daniel Bernoulli, Bd. 2 Analy-
sis und Wahrscheinlichkeitsrechnung, Birkhauser,
Basel, 1982, p. 235. English translation entitled ‘An
attempt at a new analysis of the mortality caused
by smallpox and of the advantages of inoculation
to prevent it’ in: L. Bradley, Smallpox Inoculation:
An Eighteenth Century Mathematical Controversy,
Adult Education Department, Nottingham, 1971,
p. 21. Reprinted in: S. Haberman, T.A. Sibbett
(Eds.) History of Actuarial Science, vol. VIII, Multi-
ple Decrement and Multiple State Models, William
Pickering, London, 1995, p. 1.).

Dietz, K. and Heesterbeek, J. Daniel bernoulli’s
epidemiological model revisited. Mathe-
matical Biosciences, 2002. 180(1:-2):1–21.
doi:10.12988/ces.2018.89504.

Hethcote, H. W. The mathematics of infec-
tious diseases. Society for Industrial and
Applied Mathematics, 2000. 42(4):599–653.
doi:10.1137/S0036144500371907.

Kermack, W. and Mckendrick, A. The mathematics of
infectious diseases. A Contribution to the Mathemat-
ical Theory of Epidemics,Proceedings of the Royal
Society of London. Series A, Containing Papers
of a Mathematical and Physical Characters, 1927.
115(772):700–721. doi:10.1098/rspa.1927.01187.

Koker, N. and Gozukizil, O. Application of an epi-
demic model to turkey data and stability analy-
sis for the covid-19 pandemic. Sakarya University
Journal of Science SAUJS, 2021. 25(6):1438–1445.
doi:10.16984/saufenbilder.980797.

103

http://dx.doi.org/https://doi.org/10.21203/rs.3.rs-1909006/v1
http://dx.doi.org/10.12988/ces.2018.89504
http://dx.doi.org/10.12988/ces.2018.89504
http://dx.doi.org/10.1137/S0036144500371907
http://dx.doi.org/10.1098/rspa.1927.01187
http://dx.doi.org/10.16984/saufenbilder.980797
http://creativecommons.org/licenses/by/3.0

	Introduction
	An extended model for Covid-19
	Routh-Hurwitz Criterion Approach for Stabilization
	Examples of Gershgorin Circles for Unstability and Stability
	Discussion
	Conclusion

