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Abstract

In many industrial applications, one of the primary advantages of using PID-based controllers is their
simplicity, tunability, and ease of implementation. However, in the case of high-speed machines with mag-
netically suspended rotor systems, the stabilizing control solution often involves combining PID controllers
with supporting filter structures. Depending on the case, this can lead to controllers with a significant
number of tunable parameters, ranging from 10 to 35, which can be a challenging task when done man-
ually. Therefore, a multiobjective genetic algorithm optimization is proposed in this paper to seek an
optimal configuration for the controller parameters. This paper concentrates on optimizing PID-based
controllers for AMB-suspended rotor systems, aiming to enable the analysis of outcomes within a stan-
dardized framework. Thus, the closed-loop performance is evaluated by the obtained damping properties
and robustness. Moreover, an experimental AMB–rotor system is used to assess the performance of the
controllers.
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1 Introduction

The use of high-speed machine technology based on
active magnetic bearings (AMBs) is increasing as a re-
sult of the general trend toward enhancing both the
efficiency and energy density. Such machinery requires
closed-loop control solutions to regulate the suspen-
sion system that is based on the rotor displacement
feedback information. In general, the control solutions
can be categorized into model-based solutions like ro-
bust H∞ controllers Sahinkaya and Sawicki (2020),
Noshadi et al. (2016), state–space pole placement
Nevaranta et al. (2020), or linear quadratic regulators
(LQR) Jastrzebski et al. (2019), Hutterer and Schroedl
(2022) and decentralized/centralized PID-based solu-
tions Hutterer and Schrödl (2023). The intuitive na-
ture of the tuning process and diagnosis often favors

PID-based solutions; however, in the context of AMB-
suspended rotor systems, tuning a PID controller is
more challenging because of the necessity of additional
filter structures, which adds complexity to the tuning
process.

The PID-based control solutions used in an AMB–
rotor system will be more complex depending on the
rotor dynamics (e.g., several flexible modes to be stabi-
lized and damped, a highly gyrosgopic machine), and
therefore, a PID controller with additional filter struc-
tures like notch, lead–lag, and low-pass filters are often
required to achieve robust stability and performance
of an AMB system Wei and Söffker (2016). With such
structures, the manual tuning of several control param-
eters requires engineering experience supported with
visual tools Lantto (1999), Polajzer et al. (2016).How-
ever, incorporating an optimization algorithm in the
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Figure 1: General representation of a stabilizing PID-based controller for AMB-suspended high-speed machines,
from the error signal to the control current, where the baseline controller is combined with supporting
filters. The label DE indicates the driven end, and NDE represents the nondriven end. The marking
e is the error signal for the controllers.

control design will relax the tuning problem Schmied
and Kosenkov (2013), Liu et al. (2016).

This paper focuses on the multiobjective optimiza-
tion problem of tuning PID-based controllers for AMB-
suspended high-speed machines. Similar optimization
problems for PID-controlled AMB-suspended machines
have been investigated in previous research. The opti-
mization problem typically involves dealing with more
than one objective to be optimized simultaneously,
and thus, multiobjective optimization is applied be-
cause it can provide a set of optimal solutions, also
known as Pareto optimal solutions Agees Kumar and
Kesavan Nair (2011). When considering simple PID-
tuning cases in the literature, such as Gaidhane et al.
(2017) and Meng and Xue (2009), a multiobjective
optimization technique nondominated sorting genetic
algorithm (NSGA-II) was considered in the optimiza-
tion of fractional-order proportional integral deriva-
tive (FOPID) controller parameters. In contrast, in
Schmied and Kosenkov (2013), the parameters of a
PID controller for AMB–rotor systems were numeri-
cally optimized using a gradient-based interior point
algorithm. However, these papers do not address the
stabilization of any flexible modes.

Depending on the complexity of the AMB–rotor sys-
tem under study, filters can lead to PID-type con-
trollers with a significant number of tunable param-
eters, typically ranging from 10 to 35. In Liu et al.
(2016), a multiobjective genetic algorithm (MOGA)
was proposed to optimize a control structure with
34 parameters, where the optimization objectives in-
cluded output sensitivity, a stable margin at critical
speeds, and reducing the controller gain. In Wei and
Söffker (2016), two PID controllers were optimized us-
ing MOGA considering 30 parameters. The optimiza-
tion process involved combining both frequency and
time domain-based optimization for the evaluation of
the fitness function. In Wei and Söffker (2012a), Wei

and Söffker (2012b), Wei (2015), the multiobjective op-
timization for optimizing a PID controller for an AMB-
suspended rotor system was proposed with several time
and frequency-domain objectives to be met. Finally, it
is noteworthy that multiobjective optimization has also
been applied to model-based solutions, particularly for
H∞-based approaches Zhang et al. (2017), Jastrzeb-
ski et al. (2010), focusing on optimizing the weighting
functions to synthesize the controller that meets the
given objectives.

However, despite achieving solid results in the liter-
ature covering AMB PID controller optimization prob-
lems, it appears that the performance of the controllers
is not evaluated within a framework that allows as-
sessing the improvements obtained through the op-
timization routine. The approach presented here is
different from Wei and Söffker (2016), Schmied and
Kosenkov (2013), Liu et al. (2016), Wei and Söffker
(2012a), Wei and Söffker (2012b), Wei (2015) in sev-
eral respects. First, the primary focus of this paper is
on the multiobjective optimization of PID parameters
with the objective of achieving high damping for the
flexible modes close to the operating region and min-
imizing output sensitivity. This approach differs from
the existing ones, Wei (2015), that consider several
frequency-domain and time-domain objectives, which
often lead to difficult trade-offs, Pareto front complex-
ity, solution diversity, and objective prioritization. Ad-
ditionally, the initial tuning process and the resulting
closed-loop outcomes of the existing approaches have
not been evaluated experimentally or analyzed using
tools to validate their practical applicability, Liu et al.
(2016). To establish the validity of manual tuning as
a starting point, the initial tuning methodology relies
on the Nyquist template proposed in Lantto (1999),
which provides a visualization of the loop shaping (tun-
ing) process. The uniqueness of the proposed approach
lies in evaluating the optimal controllers against the
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initial controller by using various visualization tools.
They include generalized Nyquist diagrams with nu-
merical ranges of uncertainty, MIMO closed-loop met-
rics (incorporating disk margins Seiler et al. (2020)),
and an analysis of damping properties with damping
ratios. Furthermore, the selected candidate controllers
are assessed on experimental AMB-suspended machin-
ery, both in the time and frequency domains. This
comprehensive evaluation distinguishes our approach
from others Schmied and Kosenkov (2013),Liu et al.
(2016),Wei (2015) by providing a thorough understand-
ing of controller performance using different metrics for
stability and performance.
This paper is organized as follows: Section 2 focuses

on PID-based controller tuning for AMB-suspended
rotor systems. Section 3 introduces the optimization
problem and focuses on the optimization results. Sec-
tion 4 provides the experimental results, and Section 5
concludes the paper.

2 PID-based control of
AMB-suspended rotors

When considering a rotor system with flexible modes,
often a standard PID-type control alone is not able to
stabilize the system Liu et al. (2016). Therefore, the
complexity of the control system increases as a com-
bination of filters is required to stabilize the flexible
modes, resulting in a higher control order. Thus, the
control law will be PID combined with a k number of
filters expressed in a following general form

C(s) = CPID(s) ·
k∏

i=1

Fi(s), (1)

where CPID(s) is the PID controller and Fi(s) is the
ith filter structure. Naturally, separate controllers
must be designed for both ends of the machine, i.e., in
the case of a system with one impeller, for the driven
end (DE) for the loaded side and for the nondriven
end (NDE) for the opposite end. Based on the lit-
erature, it can be justified that for most subcritical
and low gyroscopic cases, a controller that combines
PID, a second-order low-pass filter, and a second-order
lead–lag element is sufficient to stabilize the system
Hutterer et al. (2015). Based on the notations in Ta-
ble 1, this controller already has ten tuning param-
eters to be selected manually and is represented as
C(s) = CPID(s)·F2(s)·F4(s). This combination can be
considered a baseline controller that can be further en-
hanced by adding additional filters as depicted in Fig.
1. Naturally, the combination of the controller blocks
depends on the machine case under study, but a combi-
nation can lead to an extensive number of parameters

Table 1: Typical filter structures in AMB control and
their description Wei and Söffker (2016). ωLP

is the cutoff frequency and ξLP is the damping
ratio of the low-pass filter. ωn, ωd, and ωa

are the natural frequencies of the respective
filters, and ξn, ξd, and ξa are their damping
ratios.

Filter
Number Structure Description

F1(s)
1

s
ωLP

+ 1

1st order low-pass
filter roll-off

F2(s)
1

( s
ωLP

)2 + 2ξLP
s

ωLP
+ 1

2nd order low-pass
filter roll-off

F3(s)
s
ωn

+ 1
s
ωd

+ 1

1st order filter
phase lead or lag

F4(s)
( s
ωn

)2 + 2ξn
s
ωn

+ 1

( s
ωd

)2 + 2ξd
s
ωd

+ 1

2nd order filter
phase lead or lag

F5(s)
( s
ωd

)2 + 1

( s
ωd

)2 + 2ξd
s
ωd

+ 1

Notch filter
band stop

F6(s)
( s
ωa1

)2 − 2ξa1
s

ωa1
+ 1

( s
ωa2

)2 + 2ξa2
s

ωa2
+ 1

All pass filters
phase shifting

(from 10 to 35 parameters) to be selected Wei (2015).
Thus, using an optimization routine is justified to find
the best parameter combination.

2.1 Mathematical modeling

First, it is important to note that the primary focus of
this paper is not on the modeling of the AMB–rotor
system, and thus, the modeling presented here is dis-
cussed at a general level. To evaluate the optimization,
a MIMO model of the flexible rotor is used. This model
can be expressed in state–space form as follows:

ẋr(t) = Arxr(t) +Bru(t),

yr(t) = Crxr(t) +Dru(t),
(2)

where xr is the state vector that contains both the
modal position qm and the speed vectors q̇m. The in-
put vector u represents the control currents (denoted
by ic) and the output vector y represents the xy plane
displacements measured at the DE and NDE ends.
These vectors are here defined as

xr =

[
qm

q̇m

]
,

u =
[
ic,x,de ic,y,de ic,x,nde ic,y,nde

]T
,

yr =
[
xde yde xnde ynde

]T
.

(3)
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The state–space matrices of the AMB–rotor model
are formed as follows Jaatinen et al. (2019)

Ar =

[
0 I

(−M−1
m )(Km +Kx,m) (−M−1

m )(Dm +ΩGm)

]
,

Br =

[
0

(−M−1
m )Ki,m

]
, Cr =

[
SSΦ̃ΦΦ 0

]
, Dr = 0.

(4)

where Mm is the mass matrix, Dm is the damping ma-
trix, Km is the stiffness matrix, Gm is the gyroscopic
matrix, Ω is the rotational velocity, Kx,m is the posi-
tion stiffness, SS is the transformation matrix andKi,m

represents the current stiffness. More detailed descrip-
tions of the model and its parameters can be found
in Nevaranta et al. (2023). To continue the model-
ing process, a simplified actuator model is derived by
approximating the inner closed-loop control loop as a
bandwidth approximation

Ga(s) =
ωbw

s+ ωbw
(5)

where Ga(s) is the transfer function of the inner closed
loop, and ωbw represents the bandwidth of the PI-
type current controller. In the full-system model-
ing, this is considered a block diagonal expression
blkdiag [Ga(s), Ga(s), Ga(s), Ga(s)]. To ensure proper
damping production with the correct phase condition
of the controller, it is essential to incorporate lag-
causing elements in the modeling of the AMB–rotor
system. Thus, here a loop delay model is obtained
using a Padé approximation represented with a 120
µs time delay. This represents the overall loop delay
caused by various components. The complete system
model used in the optimization problem is a combi-
nation of the rotor model with the three first flexible
modes, the AMB and actuator model and the delay
model.

2.2 Manual tuning of the controller using
the Nyquist curve

In general, an effective AMB controller must ensure
the robust stability and performance of the closed-loop
system while guaranteeing damping conditions. Tun-
ing controllers manually for rotor systems suspended
by AMBs can be a challenging task, given the com-
plex dynamics of the system. Nevertheless, specific
tuning principles can be derived, as demonstrated in
Lantto (1999), to facilitate the manual control design
process, particularly in the case of sub-critical and
low gyroscopic machines. The method proposed in
Lantto (1999) uses controller loop shaping, employ-
ing a Nyquist curve with designated forbidden sensi-
tivity regions. These regions specify where the curve,

or more specifically, the numerical ranges representing
uncertainty, should not intersect. In this approach, the
rotor model is constrained to be diagonal, allowing the
derivation of a SISO controller tuning principle for the
coupled MIMO system.

In this paper, the same framework is employed, but
its visualization is enhanced through the introduction
of disk margin metrics. The main idea of the original
approach can be clarified by examining the SISO tun-
ing case, focusing on the template illustrated in Fig.
2. In this depiction, the forbidden sensitivity area is
delineated by a light blue circle centered at -1, with a
radius of 1

Ms
, where Ms denotes the peak value of the

sensitivity function S(s). Here, Ms = 2 is considered,
resulting in a circle with a radius of 0.5. Conversely,
the forbidden region based on the complementary sen-
sitivity function T (s) is depicted by a yellow circle,

positioned at − M2
t

M2
t −1

with a radius of Mt

|M2
t −1| . When

Mt = 2, a circle is centered at -4/3, with a radius of
2/3. As proposed in Lantto (1999), the second circle
is defined by shifting the center of the complementary
sensitivity circle to -2, based on practical experience.
Finally, to ensure that the sensitivity function remains
below 2 even with a 50 % increase in loop gain, a third
circle can be drawn. This circle is represented by a
yellow circle centered at -2/3, with a radius of 1/3. By
combining these yellow circles, an overall template rep-
resenting the forbidden regions is obtained, as shown
in Fig. 2, and it can be used to guide the controller
design. To be more specific, in Fig. 2, a simplified ex-
ample using a rigid point mass model illustrates how
adjustments in the parameters of a PID control com-
bined with a second-order low-pass filter can impact
the Nyquist curve L(s) = C(s) · G(s), either bringing
it closer to or farther away from the forbidden region.
The knowledge of how a single parameter impacts the
curve facilitates the manual tuning process for PID-like
controllers, particularly in low-frequency regions.

In this paper, the template serves a dual purpose:
it is used for manual design of the initial controller,
primarily aimed at ensuring that the controller has
reasonable performance and stability. Additionally,
it serves as a benchmark for assessing the results of
optimization. To be more specific, in Section 3, this
framework is used to evaluate the MIMO closed-loop
system and compare the optimized controllers, and the
approach based on numerical ranges Lantto (1999) is
combined with forbidden regions to assess performance
and stability in the low-frequency region, with a partic-
ular focus on the stability of the bending modes. This
approach based on numerical ranges (representing in-
put and output uncertainties) is used together with the
forbidden regions to evaluate the performance/stability
in the low-frequency region, but more importantly, also
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Figure 2: Example showing how a PID controller
CPID(s) combined with a second-order low-
pass filter F2(s) influences the movement of
the Nyquist curve L(s). The example in-
volves SISO control applied to a rigid point
mass system.

the stability and damping of the bending modes.

3 Optimization problem

This paper employs a Multiobjective Genetic Algo-
rithm (MOGA) to obtain an optimal set of solutions
(Pareto) for PID-based position controller parameters.
The objectives are defined as minimizing the maximum
sensitivity function value and maximizing the damping
ratio in two distinct frequency ranges. To ensure the
stability of the optimized controllers, a constraint is
imposed on the eigenvalues and the parameter search
space boundaries.

3.1 Defining MIMO optimization problem

Here, the generalized multiobjective optimization
problem is formulated as minimizing/maximizing

y =
[
f1(x), f2(x), . . . fl(x)

]T
(6)

with a number of l objectives fl subject to constraints

g =
[
g1(x), g2(x), . . . , gm(x)

]T ≤ 0 (7)

The primary objective is to maximize the singular
value of the sensitivity function, denoted by σ(S). This
singular value is defined as the larger of the maximal
singular values associated with the driven end (DE)
and the nondriven end (NDE), and as an objective as
follows

f1 = σ(S) = max{σ(Sde), σ(Snde)}. (8)

The damping ratios of the eigenvalues are assessed
separately within two frequency regions. This selection
is naturally based on rotor dynamics and flexible mode

Figure 3: In the examined rotor configuration, the first
three modes are characterized by free-free
frequencies of 276 Hz, 605 Hz, and 950 Hz.

frequencies. Here, the first frequency region, contain-
ing the rigid and the first bending modes, spans from 0
to 300 Hz, while the second region ranges from 300 to
1000 Hz including the higher frequencies. Thus, these
regions can be treated as individual objectives (f2 and
f3, respectively) Wei and Söffker (2016) and can be
defined as

f2 = ξinv[0 300] =
1

min(ξi)
, for i = 1 : k (9)

f3 = ξinv[300 1000] =
1

min(ξj)
, for j = 1 : m (10)

where ξi and ξj represent the damping ratio of the
ith and j th eigenvalues, and k and m are the num-
ber of eigenvalues in the first and second frequency re-
gion, respectively. These objective functions are used
to design the desired damping properties for different
frequency regions. To guarantee that the outcome of
the optimization problem is a stable control solution,
the following constraint is considered as a closed-loop
stability requirement

d = 0−max{(Re(λn)}, for n = 1 : l, (11)

where Re(λn) denotes the real value of the nth eigen-
value with a number of l eigenvalues.
The rotor configuration with the free-free modes is

depicted in Fig. 3. Based on the selection crite-
ria for both sides, the controllers consist of a combi-
nation of the PID control, second-order lead–lag fil-
ters, and second-order low-pass filters. The integra-
tor time constaints are excluded from the optimization
problem, and it has a constant value of TI = 0.25 s.
Hence, the optimization involves 18 parameters in to-
tal. The objectives of the optimization are to minimize
the maximum sensitivity value and increase damping in
both the low- and high-frequency regions. In the low-
frequency region, which includes the 1st bending mode
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Figure 4: Pareto front plot obtained from the MOGA
optimization; objective 1 represents the max-
imum sensitivity value (dB), while objectives
2 and 3 are the inverse damping ratios (%)
in the frequency ranges of 0–300 Hz and 300–
1000 Hz, respectively.

 

Figure 5: Stem plot of the damping ratio of the opti-
mized candidates. The plane represents the
initial damping near the first bending mode.

frequency, our goal is to increase the damping of the
1st bending mode and keep the damping below 5% for
the 2nd and 3rd bending modes. Hence, the optimized
controller should minimize the maximum value of the
sensitivity function, enhance the damping ratio of the
1st bending mode (at 276 Hz), and produce positive
(low) damping in the high-frequency region (300–1000
Hz) to stabilize the closed-loop control.

3.2 Optimization results

For the example case studied in this paper, the initial
controller (manually tuned) was intentionally designed
with a low damping for the first mode and a higher
output sensitivity at the DE channel. To be more
specific, the maximum value of the output sensitivity
function Sde(s) is 13 dB, and the damping ratio of the
1st bending mode frequency is 3%. The multiobjec-
tive optimization algorithm employed here is the non-
dominated sorting genetic algorithm (NSGA–II), with

Figure 6: Frequency response plots of the initial and
selected controller candidates (optimized).

a population size of 200. For the optimization problem,
a 10% variation of the manually tuned controller pa-
rameters was considered for both the lower and upper
bounds where Wei (2015) considered 20% . A total
of 70 candidates (Pareto) optimal solutions were ob-
tained as shown in Fig. 4, expressed as a function of
objectives. The selected candidate, depicted in Fig.
4, was chosen from the set of Pareto solutions based
on engineering judgement, and the corresponding op-
timized parameters are provided in Table 2. The best
candidate was selected based on having the minimum
sensitivity function value and high damping in the fre-
quency region of the first bending mode. However, in
general, choosing a candidate from the Pareto set that
fully satisfies all objectives is not always straightfor-
ward owing to the trade-offs between them Villarreal-
Cervantes (2017). For example, selecting a candidate
with a high damping gain may simultaneously increase
the maximum value of the sensitivity function. This
trade-off is evident in the observed behavior; all of
the 70 optimal candidates displayed increased damp-
ing close to the frequency of the first bending mode,
as demonstrated in Fig. 5. When further considering
the damping condition, Fig. 6 illustrates the frequency
responses of both controllers with the initial controller
parameters and the optimized parameters. The ini-
tial damping ratio at the first bending mode frequency
(276 Hz) was 3%, and as can be seen in Fig. 5, it
is increased to 5%. This is evident from the controller
phase condition shown in Fig. 6 as its shape on the DE
side has changed, indicating a change in the damping
properties.

A further analysis of the robustness and performance
of the initial and optimized closed-loop controllers was
carried out using a numerical-range-based generalized
Nyquist curve depicted in Fig. 8. It is noteworthy
that the original visualization illustrated in Fig. 2 is
simplified by considering only the blue and yellow cir-
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Table 2: Nominal and optimized DE- and NDE-side controller parameters considered in the optimization prob-
lem with the search space expressed as lower and upper bounds.

Parameter (DE) KP Kd Tf ωLP ξLP ωn ξn ωd ξd
Nominal 25000 100 0.0010 1257 0.13 1979 0.30 1508 0.30

Upper bound 27500 110 0.0011 1382 0.14 2180 0.33 1659 0.33
Lower bound 22500 90 0.0009 1131 0.12 1784 0.27 1357 0.27
Optimized 23116 94 0.0010 1335 0.12 1922 0.32 1608 0.29

Parameter (NDE) KP Kd Tf ωLP ξLP ωn ξn ωd ξd
Nominal 25000 100 0.0010 1697 0.12 1005 0.25 1351 0.60

Upper bound 27500 110 0.0011 1867 0.13 1106 0.28 1486 0.66
Lower bound 22500 90 0.0009 1527 0.11 905 0.23 1216 0.54
Optimized 23408 95 0.0009 1838 0.11 989 0.23 1360 0.59

cles representing the complementary sensitivity func-
tion and output sensitivity. However, the visualization
is simultaneously enhanced by incorporating the con-
cept that the multi-loop disk margin Seiler et al. (2020)
represents the largest region for simultaneous and inde-
pendent variations for individual output channels of a
loop transfer function. Thus, the red solid circle inside
the blue output sensitivity region indicates the MIMO
disk phase margin. The MIMO system is evaluated by
considering the uncertainty in the stiffness properties
of the AMB (represented by the matrix∆in with a 10%
deviation from the nominal values) and sensor sensitiv-
ity (represented by the matrix ∆out with a 10% devia-
tion from nominal values) depicted in Fig. 8 as numer-
ical ranges of the matrix L(s) = ∆inC(s)G(s)∆out

evaluated at different frequencies. Further, in the fig-
ure, the curves L(s)DE and L(s)NDE represent the DE-
and NDE-side SISO Nyquist curves, respectively.

Comparing the results of the initial controller (de-
picted in Fig. 8(a)) with the optimized controller (Fig.
8(b)), it is observed that the optimized controller is
shifting the numerical ranges (curves) further away
from the forbidden output sensitivity region at low fre-
quencies. This shift results in an increase in the robust-
ness (stability and performance) of the system, which
is evident from the enlargement of the red circle indi-
cating the disk phase margin. The original disk phase
margin was 4.9◦ , and with the optimized controller, it
increased to 12.4◦. Close to the first bending mode, the
initial controller performs similarly, as we can see from
Fig. 8 that the numerical ranges evaluated close to the
bending mode frequency (263–303 Hz) are not violat-
ing the defined regions. Furthermore, near the second
and third bending mode frequencies, no significant dif-
ference is observed between the initial and optimized
controllers from the curve as the numerical ranges are
far away from the forbidden region in both cases.

Figure 7: Experimental test system consisting of two
radial and one axial magnetic bearings.

4 Experimental Results

The experimental test system was used to validate the
optimization results both in the time and frequency
domains. The system is illustrated in Fig. 7, and it in-
corporates two radial AMBs and one axial AMB to sta-
bilize the rotor movement. The AMBs are controlled
amplifiers, and an industrial PC (Beckhoff, TwinCat)
is employed for implementing the control software and
data acquisition. The rotor displacement is measured
in four radial and one axial directions using eddy cur-
rent sensors manufactured by Bentley Nevada.

Initially, the output sensitivity functions were exper-
imentally identified using the initial and optimized con-
trollers with the AMB–rotor system at levitation (zero
speed). This was achieved by superposing a stepped
sine excitation signal to the PID controller output, one
channel and one frequency at a time, using a signal
with an amplitude of 0.2 A and frequencies ranging
from 1 Hz to 1000 Hz with a 1 Hz resolution. As
mentioned above, the DE-side manually tuned con-
troller was intentionally designed with a poor stabil-
ity/performance, and thus, the measured sensitivity of
the initial controller is above the A/B zone of 9.54
dB, while the optimized controller reduces the maxi-
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                                                                                                              (a)                                     

                                                                                                              (b)                                                                            

Figure 8: Generalized Nyquist diagram L(s) for (a) initial control parameters tuned intentionally with a poor-
performing DE channel (red dashed line) and (b) optimized control parameters. In the low-frequency
region, the numerical ranges are evaluated from 1 to 200 Hz, while at the bending mode frequencies,
consideration is given to frequencies near the bending mode frequency. On the left, the red solid circle
inside the blue output sensitivity region indicates the MIMO disk phase margin.

                                                        (a)                                                                                                                          (b)                                                                                                                                                                                            

                       

Figure 9: Experimentally identified output sensitivities (above), position step response and current disturbance
step response using the initial and optimized controllers; (a) driven end (DE), x-position and (b)
nondriven end (NDE) x-position.

112



Abubakar et.al., “Optimizing PID Controller Design for Rotor Systems Suspended by Active Magnetic Bearings”

mum sensitivity value below the A/B zone as shown in
Fig.9(a). Similarly, the NDE-side initial controller in
Fig.9(b) is close to the A/B zone limit. However, after
optimization, the sensitivity is close to 7 dB, indicating
that the optimized controller improves the performance
and robustness. Moreover, for time-domain validation,
a step input of 50 µm was applied to the position ref-
erence, and an input current step of 0.2 A was injected
into the controller output. The measured step response
with the initial and optimized DE- and NDE-side con-
trollers is depicted in Figs. 9(a) and (b). As it can be
seen from the plot, the measured optimized controller
reduced the overshoot from the DE side approximately
by 120 µm to 100 µm, and at the same time, the dis-
turbance step amplitude was reduced. Thus, both the
frequency-domain and time-domain validation clearly
demonstrate that the optimization of the control pa-
rameters results in improved system stability and per-
formance, which is in agreement with the results ob-
served in the Nyquist plots.

5 Conclusions

This paper introduced an optimization approach for
PID-based controllers used in AMB–rotor systems.
The method is based on a Multiobjective Genetic Al-
gorithm (MOGA) with two objectives and additional
constraints to guarantee stable closed-loop solutions.
The approach is integrated into a visualization frame-
work using Nyquist diagrams combined with disk mar-
gin and damping ratio plots to validate the achieved
robustness and performance. Experimental validation
demonstrated that the optimization produces effective
controllers, achieving the desired properties when eval-
uated in both the time and frequency domains. While
the proposed approach optimized the damping of the
first mode, more complex cases, such as gyroscopic ma-
chines, require additional damping objectives for spe-
cific frequency regions. Consequently, this increases
the number of filter components and controller pa-
rameters, but when evaluated against the framework
considered here, the reasonableness of the controller is
straightforward to evaluate.
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