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Abstract

In offshore environments, safe management of heavy payloads requires precise crane operations to avoid
collisions with obstacles and adjacent equipment. Uncontrolled residual swinging of suspended payloads
can quickly evolve into high-risk situations, which, if left unchecked, might lead to significant equipment
failures and associated costs. This paper explores a control methodology designed specifically to elimi-
nate payload swing in offshore cranes. We present a trajectory tracking technique explicitly crafted for
swing suppression under control, rooted in the principles of the iterative learning algorithm and based
on physics. The proposed antiswing control strategy guarantees asymptotic convergence of the payload’s
swing, angular velocity, and angular acceleration to desired values. The method was tested on a Comau
robot mounted on a Stewart platform at the Norwegian Motion Laboratory. Simulation and experimental
results comparing payload transfers with and without applying the anti-swing control method validates
it’s effectiveness.
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1 Introduction

Cranes play a pivotal role in the handling and trans-
portation of equipment within offshore industries, such
as the drilling, installation, and maintenance of off-
shore wind farms. Especially in harsh environments,
such as the North Sea, ensuring safety is paramount.
In extreme situations, a heavy lifting operation can
compromise vessel stability, potentially leading to dan-
gerous scenarios and high-cost failures.

Consequently, significant research has been done on
the modeling and control of cranes in the past decade.
In Fang et al. (2014), a dynamic Lagrangian-based
model was introduced for a boom crane mounted on
a ship. Subsequent work built on this by emphasiz-
ing offshore crane control in Qian and Fang (2016) and
Lu et al. (2018). Ellerman et al. (2002) analyzed a
moored crane-vessel with suspended load, focusing on
non-linear dynamic phenomena influenced by mooring

stiffness.

Using Kane’s method, Tysse and Egeland (2018)
and Cibicik et al. (2019) modeled a fully coupled
spatial knuckle-boom crane on a marine craft, em-
ploying a minimal set of coordinates and generalized
speeds. Here, the partial velocities essential for Kane’s
equations were defined using screws, facilitating screw
transformations for kinetic projection to the inertial
frame. Meanwhile, Landsverk et al. (2020) utilized a
classical multibody dynamics formulation to derive an
exhaustive model of a vessel, crane, and payload, ac-
counting for the full set of Cartesian coordinates, Eu-
ler angles for each body, and closed-loop kinetics aris-
ing from linear actuators like hydraulic cylinders. For
trajectory planning, approaches such as the cycloidal-
based motion profiles for manipulators have been pro-
posed for eliminating residual swing of a hanging pay-
load Alici et al. (1999); Gürsel et al. (2000). Effec-
tive swing elimination and precision in positioning for
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Figure 1: Schematic robot system
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Figure 2: Real Comau Robot

overhead cranes using Lyapunov-based analysis is il-
lustrated in N. Sun and Ma (2012) and Sun and Fang
(2014). Furthermore, a blend of input shaping with
closed-loop control has been implemented for swing
elimination in an offshore boom crane Agostini et al.
(2002). Other methods include energy-based nonlin-
ear controls Sun et al. (2018, 2019a); Chen and Sun
(2022) and adaptive controls Gao et al. (2019); Sun
et al. (2019b); Huang et al. (2022).

In this paper, we implement a trajectory tracking
method for suppressing payload swing in open-loop
control of offshore cranes. The aim is to swiftly and ac-
curately transport the load to its target location while
concurrently minimizing payload swing. Drawing in-
spiration from an iterative learning algorithm crafted
for overhead cranes N. Sun and Ma (2012), our ap-
proach utilizes an anti-swing mechanism to shape a
smooth reference trajectory. Rapid convergence of the
iterative learning makes it suitable for deployment in
current offshore crane systems. From an industrial
standpoint, this enhances transportation efficiency and
bolsters safety in high-risk environments. Notably,
our open-loop approach negates the need for sensor
feedback from the payload. Through Lyapunov tech-
niques, we demonstrate that the proposed anti-swing
control method assures asymptotic convergence of the
payload’s swing, angular velocity, and angular accel-
eration. Simulation and experimental outcomes un-
derscore the exceptional performance of this control
method. The primary innovation lies in adapting tech-
niques from N. Sun and Ma (2012) for a spatial knuckle
boom crane, diverging from the traditional planar over-
head crane, as well as expanding it’s application from
planar to spatial motion.

The paper proceeds as follows: Section II delineates
the kinematics of crane systems; Section III introduces
the anti-swing control strategy; Section IV appraises

the method’s efficacy and shares simulation outcomes;
Section V shares experimental outcomes and Section
VI offers concluding remarks.

2 Modeling of Crane System

In this paper, a closed-chain manipulator of type Co-
mau SmartNJ with an appended winch and wire sys-
tem is considered. The manipulator will capture the
essential dynamics of a typical offshore knuckle-boom
crane if two linear actuators are replaced by rotary ac-
tuators placed at the joints (see hydraulic cylinders in
Landsverk et al. (2020)).

Fig. 1 and Fig. 2 show the considered robot, param-
eterized by lengths ℓi, i = {0, 1, 2, 3, 4} and screw axes
Sj , j = {1, 2, 3}. The actuator Motor 1 is rotating
Link 1 relative to the base about axis S1 via a gear.
The actuator Motor 3 turns link Link 2 relative to
Link 1 about axis S2. For serial kinematic chains the
distal links will follow any motion from proximal links,
but notice the three links with highlighted faces in the
Fig 1. These three links together with Link 2 forms a
parallelogram kinematic mechanism. This closed-chain
design increases the stiffness of the robot and leads to
a decoupling of kinematics. Also, note that actuator
Motor 2 is rotating the parallel mechanism, whereas
the orientation of the outer links stays fixed relative to
screw axis S3. Fig. 3 shows the decoupled behaviour of
the outer links when Motor 2 is actuated while Motor
3 remains stationary.

To account for the decoupled kinematics, we append
a virtual zero-length link that negates the kinematics
between Link 2 and the outer links. Alternatively, we
define joint variable q∗3 = q3 − q2 as a replacement for
the joint variable that specifies rotation about axis S3.

The forward kinematics from the base frame {0} to
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Figure 3: Closed-chain behaviour

the tool frame {4} can be written in terms of the screws
Si and associated joint variables q, as shown in Fig. 1,
and Fig. 2 :

S1 =

[
w1

v1

]
, S2 =

[
w2

v2

]
, S3 =

[
w3

v3

]
, q =

q1q2
q∗3

 , (1)

wherewi ∈ R3 is a unit vector pointing along the screw
axis Si ∈ R6 and vi ∈ R3 is the negative kinematic
moment of the screw axis at an arbitrary point pi ∈ R3

on the screw axis,

vi = −wi × pi, i = {1, 2, 3}. (2)

Then we define the matrix T = T(q) ∈ SE(3) which
acts as the transformation from frame {0} to {4} in
the base frame

T(q) = exp(S̃1q1)exp(S̃2q2)exp(S̃3q3)T(0), (3)

where the tilde notation denotes transforming a
screw to an element in se(3) - representing the Lie alge-
bra for the special Euclidian group SE(3), and trans-
forms a vector to an element in so(3) - representing
the Lie algebra for the special orthogonal group SO(3).
Both according to

S̃ =

[
w̃ v
0 0

]
∈ se(3), (4)

and

w̃ =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 ∈ so(3). (5)

The operator exp denotes the matrix exponential

exp(A) = I+
1

2!
A2 + · · ·+ 1

k!
Ak + · · · . (6)

Finally, T(0) denotes the element in SE(3) that de-
scribes the pose of frame {4} relative to {0} when all
joint variables are zero. 1

To implement the antiswing signal, we need to first
specify a trajectory for the tool centre point (TCP)

1The zero-pose for the physical Comau robot has link 3 pointing
vertically upwards

of the crane in base frame coordinates, and trans-
form this trajectory from the cartesian tool space to
the joint space. Note that the base frame {0} is an
inertial frame, and the TCP is the origin of frame
{4}. The inverse kinematics can more easily be de-
termined by employing a small trick to account for the
offset ℓ3 between joint 3 and frame {4}. By defin-
ing joint variable q3 = q∗3 − arctan(ℓ3/ℓ4) and link
length ℓ5 =

√
ℓ23 + ℓ24 then given any TCP position

r⃗4/0 = (px, py, pz), where the notation r⃗j/i specifies a
geometric vector from frame {i} to {j}, we can write

q1 = arctan(py/px). (7)

Once we have q1 we can rotate the TCP vector r⃗4/0

by angle (−q1) about k⃗ such that the robot aligns with
the base x axis. This effectively will turn the vector
r⃗4/0 into a planar vector in the (x, z)-plane, and using
Fig. 4 we write

r⃗4/2 = r⃗4/0 − r⃗2/0 = (rx, rz). (8)

Then we can use the law of cosines to find the angle
q2. Finally, using the rightmost picture of Fig. 4, we
get the relations

π

2
+ q2 = θ + ϕ,

π

2
+ q3 = ψ, (9)

where

ϕ = arccos

(
ℓ22 + ℓ26 − ℓ25

2ℓ2ℓ6

)
, (10)

and

ψ = arccos

(
ℓ22 + ℓ25 − ℓ26

2ℓ2ℓ5

)
, (11)

where ℓ6 =
√
r2x + r2z and θ = arctan (rz/rx). Note

that we also need to account for poses that have two
equally valid solutions in joint space, i.e. elbow up.
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Figure 4: Inverse kinematics

For the relation between TCP velocity v = ṙ and
joint velocities q̇, where ṙ is the time derivative of the
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algebraic form of the vector r⃗4/0, we need to derive the
Jacobian matrix J = J(q)

v = J(q)q̇. (12)

The overall Jacobian can be interpreted as a collection
of matrices that describe kinematic contributions from
each joint

J =
[
J1 J2 J3

]
∈ R3×3, (13)

where each unit describes a cross product

Ji = wi × (r− ri/0), i = {1, 2, 3}, (14)

where ri/0 denotes the vector from frame {0} to {i},
expressed in frame {0} coordinates. Furthermore r =
r4/0, and wi is a unit vector in the positive direction
along the axis of joint i, also in frame {0} coordinates.
Differentiating Eq. (12) with respect to time yields

v̇ =
∂J

∂q
q̇2 + J(q)q̈ = C(q, q̇)q̇+ J(q)q̈. (15)

As kinematics is linear in velocity and acceleration,
and since the Jacobian is square in our interval of in-
terest, it follows that inverse kinematics for velocities
and accelerations may follow directly from equations
(12) and (15) while keeping the workspace within this
interval.

3 Antiswing Control

The control objective is to accurately position the TCP
from a point A to a point B in a specified time Tf -
starting and ending the trajectory with zero velocity
and acceleration - while simultaneously suppressing the
residual swing from the hanging load.

3.1 Trajectory Planning

Fig. 5 depicts a situation where a hanging load is
moved from point A to point B along a horizontal
straight line.
The plane in the figure highlights that the pendulum

dynamics is essentially planar and assuming no friction,
the governing equation for the payload can be written

mℓs̈ cos(θ) +mℓ2θ̈ = −mgℓ sin(θ), (16)

wherem is the payload mass, ℓ is the pendulum length,
g is the gravitational constant, and θ and s are state
variables. Note that s is the distance along the line
sB − sA = ∥rB − rA∥ where rA is the component vec-
tor for r⃗4/0 when the TCP is located at point A and
similarly for rB . Dividing Eq. (16) by mℓ yields the
equation

ℓθ̈ + s̈ cos(θ) + g sin(θ) = 0. (17)

TCP

 
  

s

A

 

Figure 5: Crane and payload

Eq. (17) forms the basis for designing a swing elimi-
nation signal - hereby denoted as the antiswing signal.
The primary control goal is for the TCP position s to
reach a specified position p without overshoot in time
Tf . The state s and it’s derivatives up to third order
must be uniformly bounded with ṡ ≥ 0, |s̈| < g and
ṡ(Tf ) = s̈(Tf ) = 0.

3.2 Antiswing Signal

First, we specify a linear filter

σ = θ̇ + αθ, (18)

where α ∈ R, and define the antiswing signal as

s̈a =
−g sin(θ) + αℓθ̇ + βσ

cos(θ)
, (19)

where β ∈ R. The TCP reference trajectory is com-
bined with the anti-swing signal as

s̈ = s̈ref + γs̈a, (20)

where γ ∈ R is a gain factor and s̈ref is a smooth tra-
jectory acceleration reference. By taking the derivative
of the filter (Eq. 18) and using the dynamics in Eqs.
(17), (19), the filter can be written as σ = C · e−βt/ℓ,
which shows that θ, θ̇ decays exponentially fast. Based
on the analysis N. Sun and Ma (2012), using Lyapunov
function

V (t) =
1

2
ℓθ̇2 − g [(]1− cos(θ)] , (21)

and Barbalat’s lemma, the antiswing signal (19) and
the reference trajectory (20) can be shown to suppress
the payload swing successfully and efficiently. The re-
sults are shown in the following theorem.

Theorem 1 The combined anti-swing mechanism
(19) and the reference trajectory (20) guarantee asymp-
totic convergence of the swing, the angular velocity, and
the angular acceleration of the payload, such that

lim
t→∞

(
θ(t), θ̇(t), θ̈(t)

)
= (0, 0, 0). (22)
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Figure 6: Iterative learning

Proof: The results are obtained using Lyapunov tech-
niques, Barbalat’s lemma and extended Barbalat’s
lemma. More detailed analysis is given in N. Sun and
Ma (2012).

The system shown in Fig. 6 shows the iterative learn-
ing algorithm, where the highlighed subsystem makes
up a single iteration of the iterative learning procedure.

3.3 Iterative Learning

The block Antiswing consists of the antiswing signal,
dependent on parameters α, β and state variables θ and
θ̇. The block Trajectory is responsible for generating a
smooth trajectory for the TCP, e.g. a quintic polyno-
mial in sr with boundary conditions ṡr(0) = s̈r(0) =
ṡr(Tf ) = s̈r(Tf ) = 0. The block is dependent on the
parameters pr, Tf , and state variable s. Note that Tf
is a constant, and pr is an optimization variable for the
algorithm. The block Load Dynamics consists of the
pendulum dynamics (17), and is straightforward. The
algorithm is utilizing the sub-system shown in Fig. 6
for each iteration k. The error e(k) is the difference
between the desired final position s(Tf ) ≈ pd and the
final position of the previous step, denoted by s(k, Tf ),

e(k) = pd − s(k, Tf ). (23)

The variable pr(k) is used as a total displacement-input
for the trajectory generator during iteration k, and gets
updated for the next iteration by

pr(k + 1) = ηe(k) + pr(k), (24)

where η governs the rate of convergence. It’s easy to
see that as e(k) → 0, the iterative algorithm stabilizes
for a suitable pr(k + 1) ≈ pr(k).

3.4 Antiswing for a Spherical Pendulum

For payload transfers where obstacles prevent linear
point-to-point motion (see Fig. 7), the hanging payload
acts as a spherical pendulum with a moving attachment
point. Using Fig. 8, we write the position vector of the

Obstruction
Initial point

Final point

Figure 7: Path inducing coordinate coupling

payload as

p = r4 +R

 0
0
−ℓ

 , (25)

where r4 is the position vector of the attachment
point in the base frame and R is the rotation matrix
R = Rz(φ2)Ry(−φ1). Note that we assume that frame
{4} is initially coincident with a global inertial coordi-
nate system, and the order of the matrix multiplication
indicates that the state variables φ1, φ2 are relative to
that global frame.

The equations of motion for the system can be de-
rived based on the system energy

Ek =
m

2
vTv, Ep = mgℓ(1− cos(φ1)), (26)

where m, g, ℓ are mass, gravity and length, and where
v = dp/dt is the pendulum velocity. The equations of
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Figure 8: A spherical pendulum

motion may be found by the Euler-Lagrange equation

d

dt

∂L
∂φ̇i

− ∂L
∂φi

= τi, i = {1, 2} (27)

where L = Ek − Ep. The right-hand side τi is zero in
both cases here. The final equations of motion - where
we denote sin(φi) and cos(φi) by si and ci, respectively,
can be written

mℓf1(φ1, φ2, φ̇1, φ̇2, φ̈1, φ̈2, ẍ, ÿ) = 0 (28)

mℓf2(φ1, φ2, φ̇1, φ̇2, φ̈1, φ̈2, ẍ, ÿ) = 0 (29)

where

f1 = ℓφ̈1 + gs1 − ℓc1s1φ̇2 + c1c2ẍ+ c1s2ÿ

and

f2 = ℓs21φ̈2 + 2ℓc1s1φ̇1φ̇2 + s1c2ÿ − s1s2ẍ

and where ẍ and ÿ are components of r̈4, i.e. acceler-
ations of the attachment point and where we assume
that z̈ = 0. Solving for ẍ and ÿ yields

ẍ =
ℓs1c1c2φ̇

2
2 + 2ℓc21s2φ̇1φ̇2 − ℓc2φ̈1

c1

+
ℓs1c1s2φ̈2 − gs1c2

c1
, (30)

ÿ =
ℓs1c1s2φ̇

2
2 − 2ℓc21c2φ̇1φ̇2 − ℓs2φ̈1

c1

− ℓs1c1c2φ̈2 + gs1s2
c1

. (31)

As for the one-dimensional pendulum, we define linear
filters for x and y in terms of the swing angle φ1

σx = φ̇1 + αxφ1, (32)

σy = φ̇1 + αyφ1, (33)

and specify antiswing signals

ẍa =
−g sin(φ1)− αxℓφ̇1 + βxσx

cos(φ1)
, (34)

ÿa =
−g sin(φ1)− αyℓφ̇1 + βyσy

cos(φ1)
. (35)

Taking the time derivative of the filters and applying
the antiswing signals yields

dσx
dt

= −βxσx
ℓ

− ÿ cos(φ1) sin(φ2)

ℓ
, (36)

and
dσy
dt

= −βyσy
ℓ

− ẍ cos(φ1) sin(φ2)

ℓ
. (37)

The kinematic coupling introduced by the additional
terms involves ÿ for σx and ẍ for σy. These become
immaterial as they are both zero at the final point, i.e.
when r4(t) = r4(T ). Since the mathematical model
is frictionless, any residual swing would persist indef-
initely. However, the duration T , during which the
coupling terms are nonzero, is negligable compared to
the timescale of asymptotic convergence described in
Theorem 1. Consequently, the temporary presence of
these terms does not impact the results from the theo-
rem.

4 Simulation Results

4.1 Implementing Anti-swing in Cartesian
3-Space

As a specific case for our model, we choose an ini-
tial pose of q1 = 40◦, q2 = −30◦ and q3 = −90◦.
Suppose we want to move the TCP by a distance
of (sB − sA) = δs =

√
δx2 + δy2 + δz2 along the

y = x direction while keeping the z-component con-
stant. Then δs =

√
δx2 + δx2. Choosing δs = 2 m

we get δx = δy =
√
2 m and δz = 0. For lengths

ℓ0 = 0.35 m, ℓ1 = 0.83 m, ℓ2 = 1.16 m, ℓ3 = 0.25 m,
and ℓ4 = 2.27 m, we get the following endpoints rA
and rB :

rA =

 1.56
−1.31
2.08

 , rB = rA +

δxδy
0

 .
The joint position values that correspond to the pose
at rB are q1 = −2.0◦, q2 = 17.6◦, and q3 = −92.6◦.

4.2 Simulation results

To test the effectiveness of the anti-swing control, we
compare the swing attenuation for a fifth-order poly-
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Figure 9: TCP displacement and payload swing angle
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Figure 10: Joint positions, velocities and accelerations

nomial trajectory

s(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5

ṡ(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4 (38)

s̈(t) = 2a2 + 6a3t+ 12a4t
2 + 20a5t

3

with s(0) = ṡ(0) = ṡ(2.3) = s̈(0) = s̈(2.3) = 0 and
s(2.3) = pd = 2, against a trajectory where the anti-
swing signal is included.

The TCP displacement along s is shown in the upper
plot and the payload swing angle is shown in the lower
plot of Fig. 9. The red and blue lines are simulation
results with and without the antiswing signal. We see
that the residual swing is effectively eliminated during
the positioning of the payload, which is at a final posi-
tion at time t ≈ 2.3 sec. Note that the so-called smooth
polynomial trajectory will yield a ±45◦ swinging mo-
tion lasting forever in a friction-less environment. Fig.
13 shows the error e(k) = pd(k)−s(k, Tf ) for iterations
k = 1, 2, ..., 20 with a learning rate η = 3.5. Further-
more, the parameters α, β and γ in equations (18), (19)
and (20) are chosen rather randomly as α = β = 20 and
γ = 0.3. Further recommendations for choosing suit-
able numbers can be found in N. Sun and Ma (2012).
The effectiveness and validity of the implementation

of the antiswing signal to the crane system, and the
system modeling shown in this paper, are verified by
feeding trajectory references derived from the modeling
as joint references for a physical Comau robot. Based
on the cartesian trajectory that realizes the aforemen-
tioned TCP displacement in Fig. 9, we find trajectories
in the joint space as shown in Fig. 10. The joint po-
sitions q(t) ∈ R3 are readily found using the inverse
kinematics from Eqs. (7), (9), (10) and (11), based on

the desired starting TCP position r(0) = rA and the
chosen direction of path variable s. The joint velocities
and accelerations are calculated using

q̇(t) = J−1(q(t))v(t), (39)

for velocity and

q̈(t) = J−1(q(t)) [v̇(t)−C (q(t), q̇(t)) q̇(t)] , (40)

for acceleration, where J ∈ R3×3 and C ∈ R3×3 are
the geometric Jacobian and it’s partial derivative, and
v ∈ R3, v̇ ∈ R3 are the velocity and acceleration of the
TCP in cartesian 3-space. The joint references for po-
sition, velocity and acceleration are tested for validity
by applying them to the physical robot.

4.3 Antiswing for a Spherical Pendulum

For the case where a straight line path is obstructed,
we carry out the iterative learning process in both the
x and the y dimensions. Hence, we get a trajectory sx
and sy, completely analogous to the single dimensional
case, but where the trajectories are displaced relative
to one another in time. Fig. 11 shows the 3D trajec-
tory of the TCP and the corresponding trajectory of
the payload when no antiswing signal is applied. The
trajectory starts from the origin (0, 0, 0) and ends at
the point (2, 2, 0) in three seconds following a quintic
polynomial trajectory in x and y directions. Fig. 12
shows the same trajectories when the antiswing signals
are applied.
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Figure 11: Simulation results: no antiswing Figure 12: Simulation results: antiswing enabled

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration

0

0.5

1

1.5

2

E
rr

o
r 

[m
]

Set-point error

Figure 13: Setpoint error vs iterations

5 Experimental Results

The experimental setup features a Comau robot model
Smart-5 NJ-110, mounted on a frame and secured to a
Stewart platform in the Norwegian Motion Labotory at
the University of Agder (UiA Motion Lab), Grimstad,
Norway Tørdal et al. (2018). The robot is equipped
with a winch system, introducing dynamic uncertain-
ties related to wire-sheave friction, wire flexibility, and
air resistance on the load. Fig. 1 shows the relevant di-
mensions used when modeling the system. The phys-
ical lengths are {0.35, 0.83, 1.16, 0.25, 2.27} in meters
for {ℓ0, ..., ℓ4}. An actual photograph of the robot is
shown in Fig. 2. A load is suspended from the winch,
with its orientation monitored using an Adafruit IMU
featuring the Bosch BNO055 sensor. Data is collected
via a Raspberry Pi powered by a power bank placed on
top of the payload. The IMU communicates over I2C
with the Raspberry Pi, which is wirelessly connected
to the host PC through SSH. Additionally, UiA Motion
Lab is equipped with a Qualisys motion capture sys-
tem comprising seventeen infrared cameras. Reflective

markers are placed at points of interest. The Qualisys
Track Manager (QTM) software calculates the spatial
positions of these markers relative to a predefined co-
ordinate system. In this experiment, four markers were
placed near the robot’s tool center point, while another
four were attached to the load.

The motion of the Comau robot is controlled by
sending joint velocity references through a UDP real-
time interface. A Speedgoat real-time target is con-
nected to a UDP server on the Comau computer, al-
lowing control from a Windows host PC via the Speed-
goat. Kinematics and antiswing reference velocities are
calculated on the Windows host and applied to the Co-
mau robot in an open-loop configuration. Each motor
of the Comau robot is managed by an internal speed
controller, utilizing field-oriented control with encoder
feedback to maintain precise velocity control.

5.1 Antiswing Experimental results

For the first test, we move the payload from an ini-
tial point q = (0,−40,−85) degrees to a final point
q = (−36.6, 27.6,−88.5) degrees, corresponding to a
displacement by δr = (0.684, 1.879, 0) meters which
displaces the TCP by a distance of 2.0 meters along
θ = 70◦ relative to x-axis of the robot. The resulting
swing angle is measured using the IMU. The results
are shown in Fig. 14 where the horizontal axis repre-
sents time in seconds, while the vertical axis denotes
the swing angle of the load in degrees. The upper plot
illustrates the swing angle with and without the anti-
swing algorithm in simulation, and the lower plot dis-
plays corresponding experimental data, measured us-
ing the BNO055 IMU sensor. The peak residual swing
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Figure 14: BNO055 IMU Data: Simulation vs experi-
ment Figure 15: Real Comau robot in UiA Motion Lab

angle measured with the IMU is 42.3 degrees and 2.9
degrees with and without the antiswing, respectively.

Recall that the simulated data is from a friction-
less environment whereas the experimental data is not.
Therefore we expect similar payload swing behaviour
only for a brief time period as shown in the figure.

Data captured with the Qualisys motion capture sys-
tem during the same experiment are shown in figures
16 and 17. Fig. 16 shows the measured TCP and pay-
load displacements and the applied joint velocities used
to realize the motion without the antiswing algorithm.
The corresponding data for the same experiment with
the antiswing algorithm engaged is shown in Fig. 17.
The plots illustrate the differences in motion between
the two scenarios, highlighting the effectiveness of the
antiswing algorithm in reducing swing and improving
positional stability during the displacement. The same
positional data for test 1 measured by Qualisys is also
presented in Fig. 18, for which antiswing is disabled,
and in Fig. 19, where the antiswing algorithm is en-
abled. The figure illustrates the trajectories of both
the TCP and the suspended payload, comparing the
motion with and without the application of the anti-
swing algorithm. This comparison highlights the effec-
tiveness of the antiswing algorithm in minimizing oscil-
lations and achieving smoother motion during the dis-
placement. With the antiswing algorithm engaged, the
trajectory of the payload follows the TCP more closely,
demonstrating reduced swing and improved positional
stability relative to the uncontrolled case.

5.2 Spherical Pendulum

For experiments where straight line payload motion is
obstructed, Fig. 20 and Fig. 21 illustrate the exper-
imental data for the spherical antiswing control. In
this test the tool center point (TCP) is displaced from
the initial position at (0, 0, 0) to the target position at
(1, 1, 0) over a duration of three seconds. These figures
display the spatial displacement of the TCP and the
resulting motion of the payload, clearly demonstrating
the significant reduction in payload swing. The corre-
sponding residual swing angles are φ1 ≈ 18◦ for data
in Fig. 20 and φ1 ≈ 3◦ for data in Fig. 21. These
results support our conclusions in previous sections,
specifically that Theorem 1 holds for the coupled dy-
namics introduced when handling spherical pendulum
and confirms the algorithms effectiveness in reducing
residual swing even in cases where perfect linear mo-
tion is unattainable.

6 Conclusion

In this paper, a control methodology is developed to
eliminate payload swing in offshore cranes using itera-
tive learning algorithm. This paper presents the adap-
tation and experimental implementation of the devel-
oped iterative control algorithm developed for offshore
cranes. It extends existing antiswing control meth-
ods to accommodate spherical pendulums, demonstrat-
ing effective reduction of residual swinging motion in
both simulations and physical experiments. Simula-
tion results show perfect antiswing with zero residual
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Figure 16: Experimental results: no antiswing

315 320 325 330

Time[s]

0

1

2

3

m

Displacement measured

TCP

Load

315 320 325 330

Time[s]

-60

-40

-20

0

20

40

60

d
e

g
/s

Joint velocities

Figure 17: Experimental results: with antiswing

swing. Although unmodeled dynamics often introduce
discrepancies, in this case, adding a spherical joint be-
tween the TCP and the wire is expected to achieve
near-ideal antiswing performance for physical payloads
as well.
Future work will extend the developed algorithm

to enable realistic antiswing compensation for an off-
shore vessel-mounted crane, compensating for distur-
bances from wave motion. Experimental results con-
firm that the payload wire experiences twisting due to
the robot’s rotation along the trajectory, an inherent
effect that should be addressed in future refinements of
the control approach.
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