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Abstract

A solution to the Perspective-n-Lines (PnL) problem is proposed where a large fraction of outliers can be
handled. The approach estimates camera pose from 2D-3D line correspondences where outliers are in the
form of line mismatches. The solution is based on graduated non-convexity (GNC) with truncated least
squares with Dynamical Pose Estimation (DAMP) as a solver. The solution is simple to implement and
does not require specialized optimization software. The method is compared to 11 state-of-the-art PnL
methods using synthetic and real data and evaluated in terms of accuracy, running time, and sensitivity
to noise and outliers. The results show that our proposed method scores among the top for accuracy and
robustness.

Keywords: PnL, PnP, Camera Pose Estimation, Dynamical Pose Estimation, GNC

1 Introduction

Pose estimation for a calibrated camera is a crucial
task in many applications of robot vision. These in-
clude Augmented Reality (Wang et al., 2020), Simul-
taneous Localization and Mapping (SLAM) (Cadena
et al., 2016) and navigation (Abdellali et al., 2019). A
common way of estimating pose, that is, position and
orientation, is based on the use of a 2D camera where
features are detected in the image and matched with
3D features with a known position. In the well-known
Perspective-n-Point (PnP) problem (Li et al., 2012),
(Lepetit et al., 2009), (Ferraz et al., 2014), points are
used as features in the pose estimation problem. In the
Perspective-n-Lines (PnL) problem (Xu et al., 2017)
the pose estimation problem is solved using line fea-
tures. Lines will often appear in man-made structures
(Coughlan and Yuille, 2003), and lines will typically
contain rich geometric information that is not found
in points features. Moreover, texture-less objects and
scenes like indoor environments often have limited dis-
tinctive points, making it difficult to detect 2D-3D cor-

respondences (Yu et al., 2020). In addition, lines are
less affected by partial occlusion compared to points,
making them more robust for applications that may
experience occlusion due to weather or lighting condi-
tions. Still, PnL remains a challenging topic due to its
higher computational complexity.

Robust camera pose estimation starts with the iden-
tification of feature correspondences. Then outliers are
found and eliminated. Finally, the inliers are used to
compute the pose estimate. The usual method for
outlier rejection is the RANSAC algorithm (Fischler
and Bolles, 1981). The RANSAC algorithm randomly
selects minimal subsets of feature correspondences so
that a tentative pose estimate can be calculated for
each subset. These tentative pose estimates are then
tested on the whole dataset, and the pose estimate with
the largest number of inlier correspondences is selected.
RANSAC is effective for eliminating outliers, but it is
non-deterministic (Antonante et al., 2022), does not
guarantee optimality (Yang et al., 2020), and may
be computationally inefficient for high outlier rates
(Parra Bustos and Chin, 2018). To avoid potential
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problems with RANSAC, the Algebraic Outlier Rejec-
tion (AOR) method was proposed in (Ferraz et al.,
2014). AOR designates correspondences with large al-
gebraic errors as outliers. Another method is consen-
sus maximization (Chin and Suter, 2017), where the
optimal solution maximizes the number of inlier cor-
respondences where the residuals are below an inlier
threshold. Graduated Non-Convexity (GNC) (Blake
and Zisserman, 1987), (Black and Rangarajan, 1996)
is also used for outlier rejection, where a robust cost
like a truncated least squares is solved in a continua-
tion method. Zhou et al. (2016) used GNC for point
cloud registration, and Yang et al. (2020) used GNC on
a wide range of registration problems with very good
results. Line correspondences, however, were not in-
cluded in their work.

Camera pose was estimated from line correspon-
dences in (Přibyl et al., 2017) where Direct Linear
Transformation (DLT) was used in a Plücker formula-
tion, rejecting outliers with AOR. The paper contained
a detailed comparison to previous work on robust cam-
era pose estimation from line correspondences. In (Liu
et al., 2021) the same problem was solved with Branch-
and-Bound (BnB) for the estimation of rotation and
RANSAC for the estimation of translation, and com-
pared with the results of (Přibyl et al., 2017).

In this paper, we propose to use GNC for outlier re-
jection in camera pose estimation from line correspon-
dences. The estimation problem in the GNC formal-
ism is given as a sequence of nonlinear least-squares
problems, where each least-squares problem is solved
with Dynamical Pose Estimation (DAMP) (Yang et al.,
2021). The excellent performance of the method is
validated in tests on well-establish image benchmarks
where our method is compared with the state-of-the-
art PnL methods tested in (Přibyl et al., 2017) and (Liu
et al., 2021) with respect to accuracy, computational
time, and sensitivity to noise and outliers.

The contribution of the paper is an outlier rejec-
tion method for the Perspective-n-Lines problem based
on GNC and Dynamical Pose Estimation, and the
validation of the proposed method on image bench-
marks in a comparison to state-of-the-art methods for
Perspective-n-Lines.

The paper is organized as follows: The prior work
is reviewed in section 2. Then the proposed method
is explained, where section 3 presents line geometry,
section 4 presents the outlier rejection method GNC,
and section 5 presents the pose estimation algorithm
DAMP. Finally, experiments with synthetic and real-
world data are presented in section 6, and the conclu-
sion is presented in section 7.

2 Related work

This section will present related work on PnL algo-
rithms: Locally iterative, Algebraic, and Linearized
solvers.

Iterative PnL solutions

The PnL problem is formulated as a nonlinear least
squares problem solved by an iterative minimization of
an error function. Liu et al. (Liu et al., 1990) con-
ducted some of the earliest work by developing the
R then T method where the rotation and position are
solved separately. Kumar et al. (Kumar and Hanson,
1994) developed the R and T algorithm that simulta-
neously estimates rotation and position. Zhang et al.
(Zhang et al., 2016) modified the method by exploiting
the uncertainty properties of line segment endpoints.
A problem with these methods is that they often con-
verge slowly and sometimes fail to produce an accurate
pose estimate due to local minima. Because of outliers
and noise, the objective in the optimization function
will often be non-convex; hence careful initialization is
needed. Therefore most of these approaches are more
suitable for a final refinement or tracking applications
than for PnL problems without prior knowledge. These
approaches are often nested in a RANSAC framework
for robustness. Methods such as David et al. (David
et al., 2003) and Zhang et al. (Zhang et al., 2012)
present an approach that simultaneously conducts cor-
respondence filtering and pose estimation.

Algebraic solutions

The PnL problem is solved with a system of equa-
tions, usually polynomial, by minimizing an alge-
braic error. Initialization is optional for these ap-
proaches. However, the solutions are not necessarily
geometrically optimal if some correspondences are out-
liers. These methods are therefore combined with a
RANSAC scheme to obtain an accurate result. Ansar
and Daniilidis (2003) developed the first method to
handle more than four lines, limiting possible solutions
to only one. This approach has a quadratic computa-
tional complexity and becomes unstable with increas-
ing noise. Mirzaei and Roumeliotis (2011) proposed a
method that is more computationally efficient (O(n))
which can handle a minimum of three lines. A disad-
vantage of this method is that it may produce multiple
solutions. Zhang et al. (2013) proposed the Robust
PnL (RPnL) algorithm, which is more robust and ac-
curate than (Mirzaei and Roumeliotis, 2011), but less
computationally efficient. Later the RPnL algorithm
was developed into the more efficient Accurate Subset-
based PnL (ASPnL) method by Xu et al. (2017), which
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gives more accurate results on small sets of line corre-
spondences, but is sensitive to outliers. Zhou et al.
(2021) recently proposed a method that applies the
Gram-Schmidt process to solve a quadratic system of
equations with the same form as the minimal problem.
It produces good results with a low number of line cor-
respondences.

Recently, Liu et al. (2021) proposed a method to de-
termine the globally optimal camera orientation given
outlier contaminated data. The method first solves the
camera rotation by applying the Branch-and-Bound al-
gorithm (Morrison et al., 2016), then RANSAC to es-
timate the camera position.

Linearized PnL solutions

Linearized PnL solutions solve the PnL problem using
a homogeneous system of linear equations, where the
size is proportional to the number of line correspon-
dences. The most significant advantage of linearized
PnL methods is their computational efficiency, making
them fast regardless of the number of line correspon-
dences. The earliest and most straightforward method
of linearized PnL solutions is the Direct Linear Trans-
formation (DLT) algorithm (Hartley and Zisserman,
2003). Silva et al. (2012) developed the method into
DLT-Lines, using 3D points on the 3D lines, and not
the lines directly. More recently, Přibyl et al. (2016)
developed a DLT method that acts on 3D lines directly
by applying Plücker coordinates. Then the method was
expanded and combined with the Direct Linear Trans-
formation algorithm to DLT-Combined-Lines (Přibyl
et al., 2017), where the 2D structures are represented
as lines and the 3D structures by both lines and points.
Xu et al. (2017) released a set of solutions to the PnL
problem, similar to DLT-Lines, using 2D lines and
3D points. The methods differ by whether Cartesian
or barycentric coordinates parameterize the 3D points
and how the solution is obtained from the null space.
Either the solution is obtained from a closed-form so-
lution using a homogeneous linear least square or it is
estimated the same way as with EPnP (Lepetit et al.,
2009). More recently, Wang et al. (2019) proposed a
direct least-squares solution for the PnL problem of a
multi-camera system.

These methods can be combined with Algebraic Out-
lier Rejection (AOR) to handle outliers, as proposed
by Ferraz et al. (2014) and applied in (Přibyl et al.,
2017) and (Přibyl et al., 2016). AOR can be imple-
mented directly into the pose estimation procedure,
where weights are reweighted iteratively by solving a
least squares problem. This method is efficient, but
usually has a breaking point when the rate of outliers
reaches a specific limit.

3 Line Geometry

Let the homogeneous transformation matrix from the
camera frame c to the world frame w be given by T c =
(Rc, tc) ∈ SE(3). Consider a line given by the points
x = x0 + αa in the world frame w, and by the points
y = y0 + βb in the camera frame c. Here a and b
are the direction vectors, and α and β are scalar line
parameters. It is noted that the points x0 and y0 are
not necessarily corresponding points. However, for any
point xj = x0 + αja on the line in the world frame,
there is a corresponding point on the same line in the
camera frame given by yj = y0 + βjb so that

yj = Rcxj + tc (1)

The line in the camera frame can be written in Plücker
coordinates (Pottmann and Wallner, 2001) as

L = (b,m) (2)

where m = y0×b is the moment of the line. It follows
that the plane through the origin of the camera frame
and the line L is given in homogeneous Plücker coordi-
nates as (0,n), where n = m/∥m∥ is the unit normal
vector.

Let the image of the 3D line L be the homogeneous
2D line ℓ in the normalized image plane. Then the
vector n is found from ℓ = n. This is shown by con-
sidering two points ya and yb on the line L which cor-
respond to the homogeneous 2D points sa = ya/∥ya∥
and sb = yb/∥yb∥ in the normalized image plane. The
homogeneous line in the normalized image plane is
ℓ = sa × sb = γ1ya × yb = γ2n, where γ1 and γ2 are
scalar constants. The scaling can be selected freely,
and it follows that ℓ = n.
The distance from a point z to the plane is nnTz.

Suppose that the estimate of the homogeneous trans-
formation matrix is T = (R, t) ∈ SE(3). Then an
estimate of the point yj corresponding to a point xj

in the world frame will be

yj = Rxj + t (3)

which has the distance nnT (Rxj + t) from the plane
of the line.
The residual for this estimate is then given by

r(n,xj ,T )2 = ∥nnT (Rxj + t)∥2 (4)

The pose can then be found from N line correspon-
dences (Lj , ℓj) by solving the minimization problem

min
T

2N∑
i=1

r2(ni,xi,T ) (5)
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where the residual is

r2(ni,xi,T ) = ∥nin
T
i (Rxi + t)∥2 (6)

and two points x2j−1 and x2j are selected for each line
j, j = 1, . . . , N , and where n2j−1 = n2j is the normal
vector of plane j.

4 Graduated Non-Convexity

In Graduated Non-Convexity (GNC) the least-squares
cost r2i in eq. (5) is replaced with a robust cost ρ(ri)
like the truncated least-squares (TLS) cost ρTLS(ri) =
min

(
r2i , ϵ

2
)
, where ϵ is the truncation threshold. This

gives a non-convex truncated least-squares problem.
Graduated non-convexity can then be used in a GNC-
TLS continuation process (Black and Rangarajan,
1996), (Yang et al., 2020) by minimization of the sur-
rogate cost function

ρµ(ri) = wir
2
i +

µ(1− wi)

µ+ wi
ϵ2 (7)

with weights given by

wi =


1, if r2i ≤ ϵ2α1
ϵ

|ri|

√
µ(µ+ 1)− µ, if ϵ2α1 ≤ r2i ≤ ϵ2α2

0, if r2i ≥ ϵ2α2

(8)

where α1 = µ/(µ+ 1) and α2 = (µ+ 1)/µ. The surro-
gate cost function ρµ(ri) will tend to a convex function
when µ tends to zero (Smith and Egeland, 2022). As
noted in (Yang et al., 2020) the second term of the
surrogate cost function in eq. (7) is independent of
the pose, and it follows that the GNC-TLS problem
defined by eq. (5) and eq. (7) is equivalent to the
weighted least-squares problem

min
T

2N∑
i=1

wir
2(ni,xi,T ) (9)

with weights wi given by eq. (8) as functions of µ.
The optimization problem can then be solved in a

continuation process. The first iteration is run with
{wi = 1}2Ni=1, and the initial value of µ is set to µ =
ϵ2/(2r2max− ϵ2) where rmax is the largest residual after
the first iteration (Yang et al., 2020). Then a sequence
of problems eq. (9) are solved where µ is increased
to

√
2µ for each new step of the sequence until the

surrogate cost function is sufficiently close to the TLS
cost. It is noted that the weights will converge to wi =
0 for outliers, and wi = 1 for inliers, so that only inliers
will contribute to the cost eq. (9) in the final solution.
Further details on the method are found in (Antonante
et al., 2022).

5 Dynamical Pose Estimation

DAMP was proposed by Yang et al. (2021) for a range
of registration problems, and the method was extended
to handle outliers with GNC in (Smith and Egeland,
2022). It was shown that the method could be used
for camera pose estimation. The advantage of DAMP
is that it is simple to implement and requires no spe-
cialized optimization software. It was shown in(Yang
et al., 2021) and (Smith and Egeland, 2022) that
the method’s performance is comparable to alternative
methods.

In DAMP, all the geometric features in the world
frame w are fixed to a rigid body Bx. The transfor-
mation T c = (Rc, tc) ∈ SE(3) is defined as the trans-
formation from the c frame to the w frame in the c
frame. The rigid body Bx is placed in frame c with the
same pose as in frame w. In DAMP the geometric 2D-
3D correspondences are represented by virtual springs
and dampers which move the rigid body to the pose in
c which corresponds to the image data. The resulting
displacement in frame c is the transformation T c. In
the case of line correspondences, each line is assigned
two mass points. Each mass point is connected with
a virtual spring and damper to the closest point on
the corresponding plane, as given by the image data.
This is illustrated in Figure 1. The parameters of the
virtual rigid body system are selected so that the sys-
tem’s potential energy is equal to the loss function eq.
(9) of the GNC pose estimation problem. Due to the
stability properties of the virtual mass-spring-damper
system, the potential energy is minimized, and it fol-
lows that the loss function eq. (9) is minimized for the
resulting displacement T of the rigid body Bx. GNC
scales the individual mass, spring, and damper con-

Figure 1: Illustration of the plane spanned by the cam-
era center and the measured 2D line, and its
corresponding 3D line and its two endpoints.
The two mass points mi and mi+1 on the 3D
line in the rigid body Bz are connected to the
plane with a spring and a damper, which give
the forces f i and f i+1.
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stants with the weighting parameters wi ∈
[
0, 1

]
.

The DAMP method for the camera pose estimation
problem with GNC is implemented as follows. Con-
sider N line correspondences where N 3D lines Li in
the world frame correspond to N 2D lines ℓi = ni in
the normalized image plane, where ni is a unit normal
vector. The N lines Li are assumed to be fixed in a
rigid body Bx. This rigid body consists of 2N mass
points that are fixed in the body. Each mass point has
position xi and mass mi, and the points are selected so
that two mass points are attached to each line in the
rigid body.
The center of mass of the rigid body is given in the
spatial frame w as

x̄ =
1

M

2N∑
i=1

mixi (10)

whereM =
∑2N

i=1 mi is the total mass, and the position
of mass point i is given by

xi = x̄+ xri (11)

A moving virtual rigid body Bz with a fixed body
frame b is defined as the copy of Bx so that the two
rigid bodies are initially aligned. The displacement
from Bx to Bz is given by Rz, tz. The position of a
mass point i in Bz is given by

zi = Rzxi + tz (12)

The center of mass is given by

zc =
1

M

2N∑
i=1

mizi (13)

The force f i acting on the point mass at zi is given by

f i = mikpnin
T
i zi −mikdżi (14)

where the first term is the spring force with spring con-
stant mikp and extension equal to the distance from zi

to the plane with normal vector ni. The second term
is the damping force with damping constant kd. The
spring constant is set to kp = (2π)2, and the damping
constant is kd = 2

√
kp.

The motion of the virtual rigid body Bz is described
by the position zc(t) and velocity vc(t) of the center
of mass, the rotation matrix Rz(t) and the angular
velocity ω(t). The initial conditions are zc(0) = x̄,
vc(0) = 0, Rz(0) = I and ω(0) = 0. The equations of
motion for the virtual rigid body Bz are given by

żc = vc (15)

Ṙz = Rzω
× (16)

v̇c = ac =
1

M
f (17)

ω̇ = α = J−1(τ − ω×Jω) (18)

where f is the force, τ is the torque, and the operator
× is defined as the outer product.The torque τ is given
by

f =

2N∑
i=1

f i (19)

τ =

2N∑
i=1

mi(x
×
ri(R

T
z f i)) (20)

where the moment of inertia is

J = −
2N∑
i=1

mi(xri)
×(xri)

× (21)

Stability of the virtual dynamical system can be es-
tablished with Lyapunov analysis using energy argu-
ments, which was was done in (Smith and Egeland,
2022) for point cloud registration. The analysis shows
that the potential energy

Vp =
1

2

2N∑
i=1

mikp
(
nin

T
i (Rzxi + tz)

)2
(22)

will be minimized. It is seen that if the mass is selected
as mi = wi, then the minimization of eq. (22) is equiv-
alent to the minimization of the GNC cost function eq.
(9) (Smith and Egeland, 2022). This shows that the
DAMP can be used as a solver for this GNC problem.

5.1 Escape equilibrium

DAMP terminates when the stopping criterion
∥v̇c, ω̇c∥ ≤ γ is met. To prevent a suboptimal so-
lution, the DAMP framework allows a simple scheme
(Yang et al., 2021) to escape unstable minima. As the
stopping criterion is met, the solution is saved, and a
perturbation is added to vc and ω before DAMP runs
again. This is done a set number of times, and the so-
lution with the lowest potential energy is returned as
the final pose estimate.

6 Experiments

In this section, we have compared our proposed method
with several state-of-the-art PnL methods, where each
method is combined with an outlier rejection method.
The methods are the same as the ones compared by
Liu et al. (2021) and Přibyl et al. (2017). Synthetic
and real image data was used, and the accuracy of the
pose estimates, computational time, and robustness to
noise and outliers were compared. The accuracy of the
pose estimate is given in terms of the rotation error and
the translation error of the camera. The rotation error
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er = arccos( 12 (trace(R
T
GTRe)−1)) is the rotation angle

between the ground truth RGT and the estimate Re.
The translation error et = ∥tGT − te∥, is the length of
the vector from the ground truth tGT to the estimated
te. The success rate is the ratio of successful runs to the
total number of runs. A run is considered successful if
er ≤ 2◦ and et ≤ 2m.

All experiments were run on a computer with an
Intel Core i7-1065G7 CPU and 32GB RAM, and all
the methods1 were implemented in Matlab2021a.

The state-of-the-art methods that are compared to
our solution are:

Ansar MLESAC4 RPnL:A system of linear equa-
tions is constructed from the 2D-3D line correspon-
dences, and the pose is obtained using a least-squares
approach (Ansar and Daniilidis, 2003). RPnL com-
putes the final solution (Zhang et al., 2013) and MLE-
SAC detects outliers (Torr and Zisserman, 2000).
Mirzaei MLESAC: A set of nonlinear polynomial

equations are solved by implementing the Grobner ba-
sis polynomial solver (Mirzaei and Roumeliotis, 2011).
MLESAC (Torr and Zisserman, 2000) detects the out-
liers.
RPnL MLESAC4: Lines are divided into triplets

to form a sixteenth-order cost function, then the op-
timum is retrieved from the roots of the derivative of
the cost function by evaluating the orthogonal errors
and the reprojected errors of the local minima (Zhang
et al., 2013). The algorithm is fused with MLESAC
(Torr and Zisserman, 2000) for outlier detection.
P3L RANSAC3: Three spatial lines are used to

solve the PnL problem. The rotation matrix is found
by exploiting the geometric constraints between the
lines by solving nonlinear equations of 8th-order poly-
nomials. Then translation is obtained by solving linear
equations (Xu et al., 2017). P3L is used with RANSAC
(Hartley and Zisserman, 2003) to detect outliers.
ASPnL RANSAC4: Lines are separated into

triplets by selecting a rotation axis, then a 16th-order
cost function is constructed from a set of P3L polyno-
mials, and an optimum solution is retrieved from its
local minima (Xu et al., 2017). Outliers are removed
using RANSAC.
LPnL Bar LS AOR: Lines are parameterized with

barycentric coordinates and solved by the least square
solver as proposed by Xu et al. (2017) and AOR is
applied for outlier rejection.
LPnL Bar ENull AOR: Lines are parameterized

with barycentric coordinates and solved by the null
space solver as proposed by Xu et al. (2017). AOR is
applied for outlier rejection.
DLT-Lines AOR: Direct Linear Transformation is

used to recover a combined projection matrix. This

1http://www.fit.vutbr.cz/∼ipribyl/DLT-based-PnL/

method is a linear formulation of the PnL problem,
combined with Algebraic Outlier Rejection as proposed
in (Přibyl et al., 2017).

DLT-Plücker-Lines AOR: Direct Linear Trans-
formation is used to solve the PnL problem using lines
in the form of Plücker coordinates (Přibyl et al., 2016)
fused with AOR.

DLT-Combined-Lines AOR: DLT-Lines and
DLT-Plücker-Lines are combined to solve the PnL
problem (Přibyl et al., 2017) and fused with AOR.

RO PnL: As proposed by Liu et al. (2021), rotation
is first obtained by applying the Branch-and-Bound al-
gorithm and then the translation is estimated using
RANSAC.

DAMP PnL GNC: The proposed PnL algorithm,
which applies DAMP (Yang et al., 2021) to obtain pose
and GNC (Yang et al., 2020) for outlier detection. The
number of GNC iterations is set to 20, and the trun-
cation threshold is ϵ = 0.3. The maximum number of
time steps for each DAMP iteration is 5 000 and the
stopping criterion is γ = 10−5. Escape Equilibrium is
activated with a perturbation of v(3)t = v(3)t−1 + 4,
and is allowed to run four times before DAMP termi-
nates.

The methods combined with RANSAC or MLESAC
were limited to 10 000 trials. The inlier threshold was
set to 1◦ in the RANSAC-based methods.

6.1 Synthetic Data Experiments

The synthetic data was generated with N = 500 line
segments defined by 2 × N randomly generated end-
points in a box of 10× 10× 10 meters centered around
the origin. A virtual perspective camera was used with
an image size of 640× 480 pixels and a focal length of
800 pixels. All lines were normalized and projected to
the camera coordinate frame. The camera was pointed
to the origin of the world frame at a distance of 25
meters from a random position. Gaussian noise with a
standard deviation of 2 pixels was added to each end-
point in the simulated image. Outliers were made by
adding Gaussian noise with a standard deviation of 100
pixels to the respective endpoints. Each method was
tested with an outlier rate ranging from 10% to 70%,
and ran 100 times for every outlier rate.

The results of the synthetic experiments are shown
in Figure 2. The rotation error for our method, shown
in Figure 2a, is the best for a 0.1 outlier rate, among
the top two for four outlier rates, and in the top three
for all outlier rates. The median rotation errors are all
lower than 0.2 degrees, and range from 0.05 degrees for
a 0.1 outlier rate to 0.2 for a 0.7 outlier rate. The trans-
lation error for our method is among the top four for all
outlier rates. The method estimates a camera position
with a median error of less than 0.14 m for all outlier
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Table 1: Example images from each sequence in the
real dataset.

Sequence Abbreviation #images lines

Model House MH 10 30
Corridor COR 11 69
Merton College I MCI 3 295
Merton College II MCII 3 302
Merton College III MCIII 3 177
Wadham College WDC 5 380

rates, as shown in Figure 2c. Figure 2b illustrates the
median run time and shows little change depending on
the outlier rate, and a median run time of 2.89 seconds
for 70% outliers. Figure 2d shows that our method
maintains robustness, showing a success rate of 97% or
better for all outlier rates. DLT-Combined-Lines AOR
(Přibyl et al., 2017) and LPnL Bar ENull AOR (Xu
et al., 2017) produce comparably accurate results, but
break at a 0.7 outlier rate and a 0.5 outlier rate, respec-
tively. LPnL Bar LS AOR Xu et al. (2017), DLT-Lines
AOR (Přibyl et al., 2017), and RO PnL (Liu et al.,
2021) maintain robustness, but are not as accurate as
our method. Mirzaei MLESAC (Mirzaei and Roume-
liotis, 2011) achieves comparable median accuracy in
translation to our method, but achieves a lower suc-
cess rate.

6.2 Real Data Experiments

A dataset was retrieved from the Visual Geometry
Group at Oxford University2. The dataset contains
sequences of 2D-3D line correspondences from pictures
of various buildings. Table 1 summarizes the character-
istics of images sequences in the dataset. All methods
were run on the six different data sequences, and no
additional outliers were added; hence the noise level in
each image is unknown.

The results are shown in Figure 3. Our proposed
method has the best median accuracy in three of
the sequences and is among the top two for five of
the sequences. As in the synthetic data case, the
LPnL Bar ENull AOR (Xu et al., 2017) method shows
excellent results for the real data; however, the most
significant difference in error between this method and
our method is 0.146◦ for the rotation and 0.0773m for
the translation, which validates the high performance
of our method.

2https://www.robots.ox.ac.uk/∼vgg/data/mview/

7 Conclusion

We have proposed a new method to solve the PnL prob-
lem with noisy and faulty line correspondence data.
The proposed method is one of the best overall, as it
is among the best methods for accuracy and the best
methods for robustness, achieving a 97% success rate
for the 0.7 outlier rate as shown in Figure 2d. The ex-
periments using real data also show promising results,
as the median errors are the most accurate in three
out of six cases and the top two in five out of six. Fig-
ure 2 shows that DLT-Combined-Lines AOR (Přibyl
et al., 2017) and LPnL Bar ENull AOR (Xu et al.,
2017) are comparably accurate, but are not as robust
as our method. LPnL Bar LS AOR (Xu et al., 2017),
DLT-Lines AOR (Přibyl et al., 2017), and RO PnL
(Liu et al., 2021) maintain the same robustness as our
method, but fail to produce the same level of accuracy,
illustrated in both the synthetic results in Figure 2 and
the real data results in Figure 3.

The running time is comparable to the method of Liu
et al. (2021). As Figure 2b shows, the other methods
are faster, but we still argue that our method compen-
sates for this with high robustness and accuracy. With
a good initial guess for rotation and position, the run-
ning time would be significantly improved and compa-
rable to the faster methods. Hence, applications such
as object tracking, visual navigation, or SLAM would
make a great fit. The robustness of our method is also
important, as it is vital in real-world applications.
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