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Abstract

The energy transition of the Norwegian ocean-going fishing fleet is challenging since there are few widely
available fuel alternatives. Many large fishing vessels stay at sea for long periods between each fuelling.
To complete its tasks and have space for the caught fish, an energy system which efficiently utilizes its
fuel is required. This work proposes a flexible optimization-based mixed-integer linear programming tool
for sizing, scheduling and analysing maritime energy systems consisting of diesel gensets and batteries,
which considers both part-load engine efficiency and battery degradation. The tool is applied on a 24-hour
data selection from an existing trawler, and the results point to the main fuel savings being enabled by
splitting the installed power capacity into smaller gensets that can run independently from each other,
and from utilizing a battery system to both reduce the total installed genset capacity to increase their
relative loading and by delaying the startup of new gensets. Smaller fuel savings can be achieved from
peak shaving of already running gensets. The current application achieves a 7.3 % fuel reduction in a
cost-efficient manner over the period. It also suggests that a fuel-reducing system might not necessarily
be cost-efficient, particularly for energy systems with small batteries.

Keywords: Fuel efficiency, Emissions reduction, Maritime energy systems, Mixed-integer linear program-
ming, Optimization

Sub- and superscripts

0 initial/original value(s)
B battery
c charge
CO continuous
CO2 carbon dioxide
Cu curtailment
cy cycle
D degradation
d discharge
F fuel
G genset
I investment/installation
L load or lifetime

M maintenance
m mechanic
N nominal
NG number of gensets
Pr propeller
PWA piece-wise affine
R running
RL running life
rr ramp rate
Sd shutdown
sh shelf
Su startup
t time
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Symbols
η % Efficiency
ρ kg/L Volumetric density
∆t h Time resolution
∆p − Power ramping
b − PWA discretization bin indicator
C NOK Cost
c various Price
D − Battery degradation
d − Point in battery degradation curve
E kWh Energy capacity
e MJ/kg Gravimetric Energy density
g − Generator index
it − Time index
J MNOK Cost function
j − PWA discretization index
kB − Degradation model parameter
kCO2 tCO2

/tfuel Emissions intensity
V m3 Fuel consumption
V̇ m3/h Fuel volume rate
ṁ kg/h Fuel mass rate
m̄ kgF/MWh BSFC/PSFC curve
N − Number of something
ṅB h−1 Battery C-rate
P , p W, − Power
ṗ %/min Power ramp rate
qSoC −, % State of charge
T h, yrs Expected life time
w − PWA discretization index weight
z − Boolean indicator/signal

1 Introduction
Sustainable access to nutritious food is important
to feed a growing world population (United Nations
(2021)). Health agencies in the EU and Norway rec-
ommend the population eat fish every week (European
Commission (2024); Norwegian Directorate of Health
(2024)) and the Norwegian fishing industry is heavily
regulated to be sustainable (Norwegian Seafood Coun-
cil (2020)). However, the Norwegian fishing industry
is still mainly run on fossil fuels. Both the Interna-
tional Maritime Organization (IMO) and the Norwe-
gian Government have committed to cutting green-
house gas emissions over the next decades and as a
part of the maritime sector, the fishing industry is un-
der increasing political pressure to reduce its climate
gas emissions.

The Norwegian fishing fleet consists of a large vari-
ety of different vessels with a large size range, fishing
equipment and operational patterns. The trawler is a
vessel type with power- and energy-demanding equip-
ment that catches large volumes of fish per trip and,
due to long stays at sea requires a dense energy system
(Norwegian Directorate of Fisheries (2024)). The term

“energy system” refers to systems consisting of both
power-generating and energy-storing components, such
as generator sets (gensets) and batteries.

A large part of the emissions from the fishing sector
is from fuel consumption (Norges Fiskarlag (2020)). No
sustainable fuel alternatives are energy-dense enough,
mature enough and available enough at scale to re-
place the currently used marine gas/diesel oil yet. This
makes improvements in fuel-efficiency one of the most
important steps which can be done over the upcoming
few years.

The Norwegian governmental institution Enova has
historically given financial support to ship companies
for installing batteries and energy efficiency measures,
and is currently working on developing new support
programs for electrification in the maritime sector (En-
ova (2024)).

Which energy system a ship owner chooses is typ-
ically dependent on what is cost-efficient, but at the
same time, many ship owners search for ways to cut
emissions. They have few incentives to cut emissions
other than costs, which are heavily impacted by the
investment, maintenance and operational costs of dif-
ferent technologies, which can both be subsidised and
taxed by authorities depending on the desired trajec-
tory of development. Price levels, as well as carbon
taxes and similar political instruments, do, however,
change over time, making it less predictable for the
ship owners in terms of what they should invest in.

Input from several ship owners is that they do not
really see the need for implementing batteries onboard
their vessels and that they would not have invested in it
without governmental support. System analysis, which
provides knowledge about the actual cost savings po-
tential from implementing a battery and how large its
capacity should be, could help the design companies to
give credible advice to the ship companies and accel-
erate a widespread implementation. Knowledge about
which types of vessels have a high potential could fur-
ther be of interest to the governmental side to ensure
that the economic support is used where it has the
largest impact.

For this reason, it is interesting to have a tool avail-
able that can be used to investigate how to size gensets
and batteries for both new systems and retrofits and,
furthermore, be used to utilize the already existing sys-
tems optimally. The tool should not be so complex
that it becomes unrealistic to implement and should
not grow so large that it becomes numerically unreal-
istic to include necessary operational constraints.

The power management of a maritime vessel is a
multi-objective task. The power demand must be met
at all times, the fuel consumption should be limited,
the degradation of the battery should be limited, and
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the running hours of the engines/gensets should be
kept to a minimum. However, frequent starting and
stopping and rapid ramping of the power units should
also be avoided to limit the stress on the equipment
and the need for maintenance. For the purpose of mak-
ing an optimization problem which considers installing
gensets or not, when to run them as well as includ-
ing certain non-linear phenomenons, mixed-integer lin-
ear programming (MILP) algorithms using linearized
piece-wise affine functions show promise.

Focusing on limiting emissions through efficient uti-
lization of the energy systems in the maritime sector is
not new. There has been suggested different optimiza-
tion approaches to design, control and analyse energy
systems to achieve emissions reductions. One example
is Vieira et al. (2022), who investigated the possible
fuel emissions reductions of a platform supply vessel.
However, they set most costs to zero in order to inves-
tigate the maximum potential fuel savings regardless of
price. They also used proprietary and licenced software
to run the analysis.

Skjong et al. (2017) suggested a MILP-based ap-
proach to consider different important objectives and
aspects. They looked into different vessels, but not
fishing vessels. Furthermore, they kept the num-
ber of gensets to a fixed number. This work used
multi-objective cost functions where power balance,
starting/stopping and number of running hours were
weighed together using tuned parameters, and a mini-
mum genset power constraint was not included in the
MILP problem itself. It took into account an assumed
optimal loading but not the fuel curve itself.

Another example is the study by Marocco et al.
(2021), which investigated the design of renewable
battery-hydrogen energy systems using a MILP frame-
work. One focus of this algorithm is the design of the
battery system, but it does not use traditional gensets
and was run with a low time resolution of one hour.

Wang et al. (2016) presented an alternative for im-
plementing a linearized degradation model for a bat-
tery in the MILP optimization problem, where fre-
quent and unhealthy usage of the battery is penalized
through a cost for the degradation.

Expanding the analysis and battery sizing by includ-
ing different scenarios is possible. These scenarios can
be generated using various load forecasting models
or based on input from the crew, depending on the
planned activities. An alternative is to use a data-
driven approach, such as the one suggested by Cha-
paloglou et al. (2022), using load forecasting, such as
the one suggested by Chapaloglou et al. (2019). How-
ever, this grows the model drastically in size.

Contributions and Objectives

This work aims to develop and document a functioning
optimization-based approach to achieve realistic emis-
sions reductions for a Norwegian trawler and purse
seiner, with the motivation of the ship owner and op-
erator in mind. The main contribution of this work is
an alternative approach to designing maritime energy
systems, which the industry can adopt when planning
their next steps of addressing emissions reductions in
the maritime sector. It is possible to set up indepen-
dently of specific software and solvers and it is most
relevant for ship designers to better advise ship com-
panies which system configuration and operational pat-
tern they should go for.

This article presents a single-objective MILP ap-
proach to limit emissions from ships. This is achieved
by minimizing the overall system cost through optimiz-
ing the system configuration and utilization. The ap-
proach investigates realistic emissions reductions from
a system cost perspective instead of the theoretical
maximum reduction while avoiding certain impracti-
cal system operations. The optimization scheme can
be applied to any isolated energy system consisting of
gensets, energy storage and power loads. Still, the fo-
cus of the current work is developing a flexible tool for
fishing vessels.

The optimization problem considers both part-load
engine fuel efficiency, battery losses and usage-related
battery degradation. The penalization included in the
cost function is calculated based on real costs instead
of using trial and error-based tuning of weights. One
result of the optimization is the optimal genset config-
uration based on a user-defined total power load time
series and battery size, as well as time series for the re-
sulting power flow in the system over the optimization
horizon.

The optimization problem is formulated to be flexi-
ble in terms of fuel technology and battery technology
by using genset fuel models and battery degradation
models in generic formats. This makes it suitable for
investigating the gradual steps from more optimal uti-
lization of existing systems with and without added
batteries to cost-optimal retrofitting of the system by
replacing one or more gensets, to finally finding cost-
optimal alternatives for new-builds with its fuel and
emissions saving potential.

2 Methods

This section presents the system model and meth-
ods used for this work and their associated assump-
tions and limitations. An optimization scheme is pre-
sented, which aims to limit the total system cost by
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Figure 1: Overview of the collected data from the vessel and its usage. The grey area is planned future testing
and validation of the output of the optimization, and is out of the scope of this work.

only installing the most cost-efficient combination of
gensets and battery, through optimized utilization of
the equipment by functioning as an optimization-based
power/energy-management system (PMS/EMS). Fuel-
efficiency and battery degradation are weighed against
each other using estimates for their real costs. .

Fig. 1 illustrates the main work flow of the research.
Mechanic and electric power measurements are col-
lected from engines and generators in operation both
on shore and on a fishing vessel, together with their re-
spective fuel consumption measurements. These mea-
surements form the basis of the work, where they are
both used to make fuel consumption models and used
as representative power load time series for further in-
vestigation.

The optimization tool is flexible dependent on the
input, and is here suggested to be used in the two first
stages found in Fig. 1. Stage 1 is a genset configuration
selection stage, and Stage 2 is a battery sizing and
analysis stage. A large selection of different gensets
are included in Stage 1, where their sizes, types and
count is dependent on the problem at hand. In order
to limit the computational effort, the resolution of the
models and data used is reduced. Results from this
stage is used to select which gensets should be included
further.

Only the chosen gensets from Stage 1 are included in
Stage 2. The resolution of the models and data are now
increased, in order to get more precise results. Results
from the second optimization stage can then be run
through a simulation framework with the same time
resolution as the original measurement data, in order to

further investigate the system performance compared
to the existing system, as indicated in Fig. 1. This last
stage is, however, outside of the scope of this article.

The energy system of the existing fishing vessel from
which measurements are collected and used is pre-
sented in Sec. 2.1. The suggested alternative energy
system is introduced in Sec. 2.2, together with the
related optimization problem. The investigative ap-
proach is presented in Sec. 2.3 together with the pa-
rameter values and input data which were used.

Limitations

The load is based on a time series from a limited period
of operation of one vessel and is set as fixed, without
options to adjust the speed or shed load if necessary.
Precision in the predicted power load is outside the
scope of this analysis, and estimates of the total load
is instead found from measurements from an existing
trawler. The analysis is currently limited to systems
powered by diesel-fueled gensets and a battery energy
storage system.

2.1 Power Load Data for the Case Study

SINTEF Ocean has provided measurements from a
fishing vessel currently in operation – a Norwegian
pelagic trawler/purse seiner. These measurements
have previously been used by Hennum et al. (2023),
and the same pre-processing of the data was done here
before further analysis.
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Figure 2: Illustration of the energy system of the existing vessel, with connected components and power balance.

Fig. 2 illustrates the on-board power system of the
existing vessel which has four generators: one shaft
generator (SG) connected to the main engine (ME),
two generators in the auxiliary gensets (AEG) and one
harbor/emergency genset (HEG). The electric power
from the generators was measured directly. The main
engine is, however, mechanically connected to the pro-
peller, such that the mechanic input power to the shaft
generator does not correspond directly to the output
mechanic power of the main engine.

The original electric power consumption (P 0
L) in each

time step (it) is estimated from the total measured
electric power production, as seen in Eq. (1).

P 0
L [it] = PSG[it]+PAEG1[it]+PAEG2[it]+PHEG[it] (1)

The objective is to evaluate the performance of dis-
tributing the load differently than currently done, and
how the optimization tool works. In order to avoid
varying results arising from inaccuracies in the fuel
models, the collected fuel measurements are not used
for comparison with the suggested system. Instead,
the fuel consumption was estimated from power val-
ues and the same fuel models as the optimized sys-
tem. This way, the performance of the suggested op-
timization scheme could be evaluated more directly.
This was done using the break-specific fuel consump-
tion (BSFC) and the power-specific fuel consumption
(PSFC) models produced from the ship for the ME
and AEG1/AEG2 data, respectively. The precision of
using the fuel curves on the collected data is outside
the scope of this article, but was addressed in Hennum
et al. (2023). There were not enough data points over
the whole loading range to make a full model based on
the HEG data, so here the PSFC model from experi-
mental results in a hybrid lab was used instead.

In the existing system, the main engine drives both a
propeller and a shaft generator. The suggested system
presented in Sec. 2.2 has no such mechanical link to the
propeller. The mechanic propeller load is, for this rea-
son, replaced by an electric load by introducing an elec-
tric motor between the electric bus and the propeller.
The mechanic propeller power (Pm

Pr) was not measured,
but was estimated from the difference between the me-
chanic SG load (Pm

SG) and mechanic ME load (Pm
ME).

The equivalent electric power PPr was then calculated
from Eq. (2a), using the aforementioned power differ-
ence and a constant motor efficiency (ηM). This in-
creases the total power load used in Eq. (3a) with an
equivalent load PPr, as seen in Eq. (2b), from P 0

L to
PL.This is used as the baseline power consumption for
comparison with the optimized power flow.

PPr[it] =
Pm
ME[it]− Pm

SG[it]

ηM
(2a)

PL[it] = P 0
L [it] + PPr[it] (2b)

The mechanic SG power (Pm
SG) was not measured,

but instead estimated from the measured electric power
PSG and efficiency models for the shaft generator, un-
der the assumption that it has the same part-load prop-
erties as the two generators connected to the auxiliary
engines. The resulting electric power load is visualized
in Fig. 6, for both time periods and both time reso-
lutions. This adjusted system consisting only of four
gensets and a total power load is hereby referred to
as the “baseline system”. In the baseline system, the
ME/SG is replaced by a main genset (MG).
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Figure 3: Illustration of the main switch board of the suggested vessel, with connected components and power
balance.

2.2 Suggested System and Optimization
Problem

The suggested system consists of NG generator sets
(gensets, G) each consisting of an engine and a gener-
ator, and a battery energy storage system (bess, B),
which together serve the total power load (L), as il-
lustrated by Fig. 3. Additionally, the option to curtail
power production is included. The optimization does
not include mechanic loads such as the propeller con-
nection in the existing system. The conducted analysis
is limited to conventional marine gas oil (MGO). How-
ever, the optimization problem is flexible for other fuels
to be included.

The instantaneous power balance of the components
connected to the switch board is visualized in Fig. 3.
The sum of the power produced from all generators
and the net delivered power from the battery, minus
any curtailed production, must equal the sum of the
total power consumption. All the power parameters
are as per unit power p ∈ [0, 1], which is defined as
their power P divided by their installed power capaci-
ties PN. The power balance per time instant is given
by Eq. (3a), and the resulting total fuel consumption
rate ṁ is found from Eq. (3b).

PL[it] =

NG∑
g=1

pg[it] · PN
g + (pdB[it]− pcB[it]) · PN

B

− pCu[it] · Pmax
Cu (3a)

ṁ[it] =

NG∑
g=1

m̄g[it] · pg[it] · PN
g (3b)

The overall optimization problem is defined as a
mixed-integer linear program (MILP). The optimiza-
tion is solved using a problem-based approach, using
the Optimization Toolbox in MATLAB and the exter-
nal solver “intlinprog” from Gurobi™ (v. 10.0.3). Parts
of the method is similar to the scheduling stage im-
plemented in Hennum (2021), but includes some other

components as well as more details and model preci-
sion.

The optimization scheme is set up to minimize the
total system cost. The overall cost function J is defined
as Eq. (4a), as the sum of the cost of the battery (CB)
and each genset g (Cg), as well as other costs intro-
duced by expansions of the optimization problem with
variables and constraints. The option to curtail over-
production is included to reduce any potential chal-
lenges meeting the otherwise hard optimization con-
straints, and is penalized with a cost CCu.

min
y

J subject to

J =

NG∑
g=1

Cg + CB + CCu (4a)

y = [yT
g , yT

B, yT
o ]

T (4b)

yg = [pg, wg, bg, ∆pg, zIg, zRg , zSug , zSdg ]T ,

∀ g ∈ {1, . . . NG} (4c)

yB = [pdB, pcB, zcB, wB, bB, qSoC, d, Dcy
t ,

Dcy, Dsh, D]T (4d)

yo = [pCu, pG]
T (4e)

The optimization problem has the decision variables
specified in Eqs. (4b)–(4e), for the gensets, the battery
system and otherwise. All decision variables are non-
negative, and they are normalized such that their val-
ues are limited to the range 0–1. In order to limit the
range of the cost function, J , is expressed in million
Norwegian crowns (MNOK). These two range reduc-
tions were done for numerical stability and precision of
the solver.

Each of the components and their respective decision
variables and costs are described in the following sec-
tions, followed by the applied optimization constraints.
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2.2.1 Genset Models

The system includes several gensets, where every
genset g has its own power decision variable pg ∈ [0, 1]
representing the loading of the genset relative to the
installed capacity. The different equations describing
the gensets are presented in this section, together with
their decision variables and constraints.

Genset Running and Installment Signals

A binary optimization variable zRg ∈ {0, 1} is used as a
running signal for each genset, indexed by time. Simi-
larly, a second binary optimization variable zIg ∈ {0, 1}
is used as an investment or installment signal. Eq. (5a)
enforces that the running signal is 1 for every time
step where the genset power is nonzero, and Eq. (5b)
enforces that the installment signal is 1 if the genset
power is nonzero at any point over the optimization pe-
riod. zIg is calculated directly from pg instead of from
zRg in order to be able to include each of the two pa-
rameters independently of the other.

zRg [it] ≥ pg[it] (5a)

zIg ≥
Nt∑
it=1

(
pg[it]

Nt

)
(5b)

Limitations on Number of Gensets

For redundancy purposes, it is required that at least
Nmin

G gensets were installed, as enforced by the con-
straint Eq. (6a). For practical reasons like space limi-
tation, it is required that a maximum of Nmax

G gensets
were installed, as enforced by the constraint Eq. (6b).

NG∑
g=1

zIg ≥ Nmin
G (6a)

NG∑
g=1

zIg ≤ Nmax
G (6b)

Minimum Genset Power Output

The high values of the PSFC curve increase the cost of
running the gensets on low loading. However, gensets
typically cannot operate below a certain threshold
power, typically called the idle power. In order to
model the idle power, a minimum power is enforced by
adding the constraint Eq. (7a), where the power of a
running genset is limited downward to pidleg . This con-
straints the running signal to only be one if the genset
is producing sufficient power. The maximum curtailed
power is, as Eq. (7b) indicates, set as the idle power of
the largest available genset.

pg[it] ≥ pidleG · zRg [it] (7a)

Pmax
Cu = pidleG ·max (PN

g ) (7b)

Genset Startup and Shutdown

Starting and stopping gensets are both fuel and main-
tenance demanding, and should be kept to a minimum.
The startup and shutdown of gensets should, thus, be
monitored, and frequent starting and stopping should
be avoided. For this purpose, two binary optimization
variable were included for each genset, zSug as a startup
signal and zSdg as a shutdown signal. In order for these
to get the correct value, the constraints in Eq. (8) were
included for the startup, and the constraints in Eq. (9)
for the shutdown.

zSug [it] ≥ zRg [it]− zRg [it − 1] (8a)

zSug [it] ≤ zRg [it] (8b)

zSug [it] ≤ 1− zRg [it − 1] (8c)

zSdg [it] ≥ zRg [it − 1]− zRg [it] (9a)

zSdg [it] ≤ 1− zRg [it] (9b)

zSdg [it] ≤ zRg [it − 1] (9c)

Eqs. (8a) and (9a) ensure that the startup and shut-
down signals are 1 when the running signal switches
from 0 to 1 and 1 to 0, respectively. Eqs. (8b)–(8c) and
(9b)–(9c) ensure that the startup and shutdown sig-
nals are 0 when the running signal remains unchanged,
respectively, regardless of which value it has. These
four constraints have the additional function of ensur-
ing that the startup signal is 0 if the running signal
switches from 1 to 0, and that the shutdown signal is
0 if the running signal switches from 0 to 1.

Uniform Genset Power Distribution

In steady-state operation it is desired to have a uniform
ramping and relative loading of each running genset,
instead of running gensets on very different loading.
In order to achieve this, a decision variable pG ∈ [0, 1]
representing the common loading is introduced. This
is enforced through the constraints in Eq. (10).

pG[it]− pg[it] ≤ 1− zRg [it] (10a)

pg[it]− pG[it] ≤ 1− zRg [it] (10b)

153



Modeling, Identification and Control

Genset Ramp Rate

A decision variable ∆pg ∈ [0, 1] is introduced to con-
trol the ramping of the gensets. It represents how
much the genset power has changed from the last time
step, and is defined as the nonlinear equation Eq. (11a),
which is linearized to the two constraints Eqs. (11b)
and (11c). It is assumed that all gensets have a power
of zero prior to the optimization period. The ramping
is through the constraint Eq. (11d) limited upwards to
a maximum value of 1 per time step in all situations.
The ramping is further limited upwards to a maximum
ramp rate ṗmax

g through the constraint Eq. (11e). The
startup and shutdown signals are included here in or-
der to avoid that the maximum ramp rate requirement
inhibits the solver from starting or stopping gensets
without violating the constraint.

∆pg[it] = |pg[it]− pg[it − 1]| (11a)
∆pg[it] ≥ (pg[it]− pg[it − 1]) (11b)
∆pg[it] ≥ (pg[it − 1]− pg[it]) (11c)
∆pg[it] ≤ 1 (11d)

∆pg[it] ≤ ṗmax
g ·∆t+ zSug [it] + zSdg [it] (11e)

It should be noted that the ramping variable is not
constrained to follow the ramping exactly, as from
equation Eq. (11a). It is, however, constrained to be
between the ramping and the maximum allowed ramp-
ing by constraining it downwards through Eqs. (11b)
and (11c), and upwards through Eqs. (11d) and (11e).
In situations where the ramping cost is negligible, this
could cause the ramp rate variable to deviate from the
actual value. Any ramp rate that is considered as a
result is, for this reason, calculated directly from pg in
Eq. (11a), instead of using the output ∆pg.

Genset Usage and Fuel Consumption

The details of the fuel consumption lie within the fuel
efficiency of each engine, the gravimetric fuel density
and the energy efficiency of the connected genset.

The total fuel-to-mechanic power efficiency is mod-
eled through BSFC curves, which give information on
how fuel-efficient an engine operates at different me-
chanical loads. Similarly, the total fuel-to-electricity
efficiency is modeled through PSFC curves, which give
information on how fuel-efficient a genset operates at
different electrical loads. Lastly, some generators were
modeled alone through efficiency curves. These were
expressed as functions of either the mechanic input
power or the electric output power, depending on the
purpose of the model.

The BSFC and PSFC curves are denoted m̄m and m̄,
respectively, and are expressed as the fuel consumption
for different per-unit output power values. These take

into account all losses from the lower heating value
(LHV) of the fuel to mechanic power or electric output
power, respectively. The genset efficiency curves are
denoted ηg, and are expressed as the total efficiency
for different per-unit power values.

The PSFC curves are too non-linear to in a meaning-
ful manner be linearized using a single line. To fit in the
MILP problem it was, thus, instead linearized by treat-
ing it as a piece-wise affine (PWA) function, defined by
a set of points with linear functions in-between. At any
point in time, the power-fuel consumption relationship
can be described by maximum 2 of these points with
a straight line in-between them. The relationship be-
tween the genset power and the PSFC can, thus, be
described by weighing together the two nearest points.
The number of points and distance between them were
chosen based on how nonlinear the model is.

The PSFC requirements were enforced using a spe-
cial ordered set of type 2 (SOS2). This was done by
introducing a set of binary variables bg ∈ {0, 1} to in-
dicate which line segment is active, and a set of decimal
weights wg ∈ [0, 1] to weigh together the two adjacent
PWA points. Both parameters have two dimensions:
one for each linearization point (jg) and one for each
time step (it) over the scheduling horizon.

The SOS2 requires that for any feasible solution
maximum two (and subsequent) of the binary variables
are non-zero at any point in time, together forming one
line-segment. Eq. (12d) enforces that only one line seg-
ment is active at any point in time, Eq. (12c) enforces
that the point has to lie on a straight line between
the two points, and the contiguity constraint Eq. (12e)
enforces that the two chosen points have to be subse-
quent.

The decimal weights are combined with the fuel
model data (pPWA

g and m̄PWA
g ) to return the exact

genset power and fuel consumption for each time step.
The power output from the genset is found from
Eq. (12a), and its fuel consumption rate is found from
Eq. (12b). The mass of the fuel is calculated instead of
the volume, since parameters like energy content and
carbon content are related directly to the fuel weight.

pg[it] =

NPWA
g∑

jg=1

wg[it, jg] · pPWA
g [jg] (12a)

ṁg[it] = PN
g ·

NPWA
g∑

jg=1

wg[it, jg] · m̄PWA
g [jg] · pPWA

g [jg]

(12b)
NPWA

g∑
jg=1

wg[it, jg] = 1 (12c)
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NPWA
g −1∑
jg=1

bg[it, jg] = 1 (12d)

wg[it, jg] ≤ bg[it, jg] + bg[it, jg − 1] (12e)

Data sheets from engine manufacturers give limited
information on the fuel consumption at part-load, and
rarely cover low loads in detail. Considering that fuel
efficiency is highly influenced by the loading of the en-
gine, it was necessary to have models of the whole
power range 0–1 Wpu. To get this, characteristics of
different gensets were obtained from gathered measure-
ments. The aforementioned measurements from Sintef
Ocean was used, in addition to some measurements
which were gathered from experimental work in a lab.

Genset AG: Auxiliary Engines and Generators The
fishing vessel has several auxiliary engines which supply
one generator each. For these sub-systems, there were
available measurements for both the fuel consumption,
the mechanic power and the electric power. The fuel
consumption measurements and measured electrical
power were used to make a PSFC model (m̄AG(pAG))
directly, for auxiliary engines with a generator.

Genset MG: Main Engine and Shaft Generator On
the existing vessel, the main engine (ME) is connected
mechanically both to the propeller and to the shaft
genset. There is, thus, not a direct relationship be-
tween the fuel measurements and the measured electric
genset power. However, the mechanic engine power
was measured, and could be used to find the fuel-to-
mechanic power-efficiency. Due to lack of measure-
ments for the mechanic power of the shaft genset, the
efficiency of this could not be found directly. Instead,
it’s part-load efficiency was assumed to be similar to
the other gensets. Under this assumption, the engine
efficiency and the genset efficiency could be combined
to find an estimated PSFC-curve (m̄MG

e (pMG
g )) for the

main genset (MG). The two efficiency models were ex-
pressed as functions of the electric load in order to get
the correct per-unit power values.

Genset LG: Hybrid Energy Laboratory Experimental
work was conducted in the Hybrid Energy Laboratory
at NTNU in Ålesund, to obtain fuel measurements and
electric power production at part-load. This was done
together with the main author of Æsøy et al. (2022),
where the same measurements are presented. These
were used to make a PSFC model (m̄LG(pLG)) directly
from the fuel and power measurements.

The three genset models which were found from the
gathered measurements are visualized in Fig. 4. They
had three different sizes, and the models show some

deviations between the different equipment. The on-
board auxiliary engines with gensets showed the best
fuel performance. For almost all loads, the main engine
with genset was the most fuel-efficient. Hennum et al.
(2023) showed that the small local maxima around
0.4 Wpu originated from a reduced genset efficiency
at part-load. The PWA points are distributed over
the range 0–1, with the first point at 0, the second
point at pidleg and the last point at 1. The rest are
non-uniformly distributed between pidleg and 1, where
the distance between each point is dependent on the
curvature in order to capture the variations.

Figure 4: PSFC curves produced from gathered fuel
and power measurements.

2.2.2 Genset Costs

There are costs related to installing and using the
gensets, which are presented in this section. The genset
cost Cg is calculated for each genset g from Eq. (13), as
the sum of an investment cost CI

g, a maintenance cost
CM

g , a fuel cost CF
g , a startup cost CSu

g , a shutdown
cost CSd

g and a ramping cost Crr
g . The five genset costs

are dependent on if, how, how often, and how much
each genset is installed and used.

Cg = CI
g + CM

g + CF
g + CSu

g + CSd
g + Crr

g (13)

Genset Investment Costs

An investment cost CI
g was included for each genset,

which gave a cost depending on whether or not the
genset was used at any point over the scheduling hori-
zon. The objective was to limit the number of gensets
committed and used in the scheduling. To achieve
this, the investment cost for each genset is defined by
Eq. (14a), where cIg is the genset price, PN

g is the in-
stalled power capacity of each genset and ∆t is the
time resolution of the optimization problem. It is not
meaningful if the optimization solver weights invest-
ment costs for equipment meant to be used over many
years with operating costs for a short time window.
To avoid this without including many years of data
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in one round of optimization, the investment cost was
scaled in Eq. (14a) by the ratio between the optimiza-
tion horizon and the expected genset lifetime TL

g . To
model the price drop for increasing size of the gensets,
the price model in Eq. (14b) was used based on input
from a company delivering gensets in a relevant size
range. Here, PN

g is given in W and the price is given
in NOK/W.

CI
g = PN

g · cIg ·
∆t

TL
g

· zIg ·Nt (14a)

cIg = 6.31− 7.1 · 10−8 PN
g (14b)

Genset Maintenance Cost

A maintenance cost CM
g was included for each genset,

which was dependent on the number of running hours
per genset. The objective was to limit the number
of implemented gensets running simultaneously. This
was calculated for each genset from Eq. (15), as the
share of the genset installation cost calculated from the
ratio between the running time and the expected genset
lifetime TRL

g . A relevant company gave an estimate
that the accumulated maintenance cost is as large as
the new-price after around 80 000 running hours.

CM
g = PN

g · cIg ·
∆t

TRL
g

·
Nt∑
it=1

zRg [it] (15)

Genset Fuel Costs

A fuel cost was included for each genset, to limit the
amount of fuel consumed through optimal utilization of
the overall energy system. The total fuel cost of each
genset was found as the sum of its fuel consumption
over all bins and time, multiplied with the fuel price.
This is defined in Eq. (16), where the fuel density ρFg
and fuel-specific carbon density kCO2

g are included to
get correct units. The PSFC value was not included as
a separate optimization variable, in order to limit the
size of the optimization problem.

CF
g =

(
cFg
ρFg

+ cCO2
· kCO2

g

)
·∆t ·

Nt∑
it=1

ṁg[it] (16)

Genset Ramping Costs

The ramp rate was penalized with the ramp rate cost
Crr

g calculated from Eq. (17a) with a ramping price crrg .

Crr
g =

crrg
∆t

· PN
g ·

Nt∑
it=1

∆pg[it] (17a)

Genset Startup and Shutdown

In order to limit frequent starting and stopping, the
startup and shutdown signals were penalized with the
startup and shutdown costs CSu

g and CSd
g , through the

startup and shutdown prices cSug and cSdg , respectively.
These were calculated from Eq. (18).

CSu
g = cSug · PN

g ·
Nt∑
it=1

zSug [it] (18a)

CSd
g = cSdg · PN

g ·
Nt∑
it=1

zSdg [it] (18b)

The optimization itself assumes steady-state and
does not take into account the time-, fuel- and mainte-
nance cost-consuming transient startup and shutdown
of the gensets. The startup and shutdown prices repre-
sent the transient startup and shutdown periods which
are not addressed by the running signal.

The startup and shutdown prices are calculated from
Eq. (19). The first part is the total fuel cost of running
the genset on idle power (2nd PWA point) for a startup
time ∆tSu and shutdown time ∆tSd, respectively. The
second part is the assumed investment cost related to
the proportion of one startup/shutdown cycle assuming
that the genset can take NS

g startup/shutdown cycles
before having to be renewed. Half of this last price is
put on the startup, and half is put on the shutdown.

cSug =
cFg
ρFg

· m̄PWA
g [2] · pPWA

g [2] ·∆tSu +
cIg

2 ·NS
g

(19a)

cSdg =
cFg
ρFg

· m̄PWA
g [2] · pPWA

g [2] ·∆tSd +
cIg

2 ·NS
g

(19b)

2.2.3 Curtail Produced Power

The option to curtail power was included by introduc-
ing a variable pCu ∈ [0, 1] in the power balance in or-
der to address infeasibility issues that could arise from
the periods with lower loads than the minimum genset
power at the currently running genset. To include the
curtailed power also makes it possible to handle fast
down ramping of the load without getting infeasibility
issues related to hard constraining of the maximum
down-ramping of the gensets. The costs of curtail-
ing power is calculated from Eq. (20), where cCu is
the curtailing price. The absolute maximum allowed
curtailed power is calculated as the idle power of the
largest available genset.

CCu = cCu ·∆t · Pmax
Cu ·

Nt∑
it=1

pCu[it] (20)
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2.2.4 Battery Models and Costs

A battery pack is included with optional power and en-
ergy capacity. The battery is treated as a single battery
regardless of its capacity.

The battery energy storage system is being dis-
charged and charged throughout the operation of the
vessel, where the positive power flow is defined out from
the battery. The aforementioned pdB and pcB which en-
ter the power balance in Eq. (3a) constitute the exter-
nal power flow of the battery, as defined by Eq. (21a).
The charging and discharging are, however, not ideal
processes. To account for the resulting losses, discharg-
ing and charging efficiencies ηdB and ηcB are introduced,
and the internal power pinB which actually stores and re-
leases energy can then be expressed as Eq. (21b). The
nature of the efficiencies working opposite ways to ei-
ther increase or decrease the internal power compared
to the external power illustrates the need for splitting
the battery power in its two components as a part of
the linearization stage.

pB[it] = pdB[it]− pcB[it] (21a)

pinB [it] = pdB[it] · 1
ηd
B

− pcB[it] · ηcB (21b)

The external battery power variables pdB and pcB
are constrained to operate between 0 and the nomi-
nal power value PN

B . To ensure that the battery is not
charging and discharging at the same time, a binary
optimization variable zcB is introduced as a charging
signal. The constraints related to the charging signal
are given by Eqs. (22a) and (22b).

0 ≤ pcB[it] ≤ zcB[it] , zcB ∈ {0, 1} (22a)

0 ≤ pdB[it] ≤ 1− zcB[it] (22b)

The battery power is related to the battery state of
charge (SoC) as described by Eq. (23a), which calcu-
lates how charged the battery is after time step it. The
battery is to be used for peak-shaving and not as an
energy source, and the final SoC is therefore set equal
to an initial user-defined initial SoC, q0SoC, as enforced
by the constraint in Eq. (23b). The nominal battery
power is set from the installed energy capacity EN

B and
a chosen maximum C-rate ṅmax

B .

qSoC[it] = q0SoC − ∆t · PN
B

EN
B

it∑
it=1

pinB [it] (23a)

qSoC[Nt] = q0SoC (23b)

PN
B = EN

B · ṅmax
B (23c)

Similarly as for the generators, the battery is sub-
ject to costs related to both the investment/installation
(CI

B) and usage. For the battery, the latter is related

to battery degradation (CD
B ) which speeds up the need

for a reinvestment. The total battery cost is defined as
the sum of these two costs, as given by Eq. (24).

CB = CI
B + CD

B (24)

Battery Investment

The first battery cost is the investment cost CI
B, which

was included regardless of whether the battery is used
or not. The battery was assumed installed indepen-
dent of cost-effectiveness and the installation cost was
calculated as Eq. (25), where cIB is the battery price.
To achieve this, this cost was included only in the post-
optimization cost calculation, not in the cost function.
Similarly as for the gensets, the investment cost is
scaled by the ratio between the optimization horizon
and the expected shelf lifetime T sh

B .

CI
B = cIB · EN

B · ∆t

T sh
B

·Nt (25)

Battery Usage and Degradation

The charging/discharging cycling of battery has a con-
siderable impact on its degradation. The more de-
graded the battery is, the less of its lifetime is left
and the sooner the ship owner needs to re-invest in
a replacement battery. A degradation-cycling-related
reinvestment cost is for this reason included, in order
to limit the battery degradation from wrong usage and
over-usage. Both shelf degradation and cyclic degrada-
tion are included in the full degradation model. This
is inspired by Wang et al. (2016), with some adjust-
ments. This degradation model is selected because it
takes into account that frequent deep cycling acceler-
ates the degradation, without requiring a highly ad-
vanced model. This cost is calculated from the battery
price, the energy capacity of the battery and the total
fraction (D) of the degraded battery capacity over the
scheduling horizon, see Eq. (26a). The battery degra-
dation represents a reduction in battery life and is set
as the maximum of the shelf degradation (Dsh) and the
cycle degradation (Dcy), as stated by Eq. (26b). This
is enforced by introducing the constraints of Eq. (26c)
and Eq. (26d).

CD
B = cIB · EN

B ·D (26a)

D = max{Dsh, Dcy} (26b)

D ≥ Dsh (26c)
D ≥ Dcy (26d)
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Shelf Degradation

The shelf degradation was implemented through the
assumption that a battery would last a certain amount
of time T sh

B before needing to be replaced even when
unused. This degradation of the battery is calculated
as the ratio between the optimization horizon and the
expected shelf life, as showed by Eq. (27).

Dsh =
∆t ·Nt

T sh
B

(27)

Cyclic Degradation

The cyclic degradation was implemented through the
continuous degradation model Eq. (28a) from Duggal
and Venkatesh (2015), which gives the number of ex-
pected charging cycles NCO

c if discharging to various
states of charge. The inverse of Eq. (28a) gives the
expected degradation for a regular full charging cycle
between a full battery and this state of charge. The
two curves are visualized in Fig. 5.

NCO
c = kB1 · (1− qSoC)

−kB2 (28a)

dCO = 1
kB1

· (1− qSoC)
kB2 (28b)

A number of NPWA
B PWA points were distributed

uniformly over the range between qmin
SoC and qmax

SoC , since
the battery’s SoC is limited to this range. To correct
for the average error which comes from the curvature of
the continuous model, each point is corrected by the av-
erage deviation between the continuous curve and the
linearized curve in the adjacent bins. This introduces
an error in each point, but reduces the overall error
of the model. Only four and five PWA points are in-
cluded for the two levels of precision, in order to limit
the model size. Both the continuous model and the
two PWA linearizations are visualized in Fig. 5, from
which it appears that none of the linearizations deviate
significantly from the continuous model. This is con-
firmed by mean absolute percentage error (MAPE) of
1.8797 % and 1.0429 %, and coefficient of determina-
tion (R2) of 0.9997 and 0.9999, respectively.

Equivalent SOS2 constraints as for the generator fuel
curve presented in Eq. (12) were enforced to linearize
the battery degradation model. These are presented
in Eq. (29), where binary variables (bB) and decimal
weights (wB) are introduced. The three constraints en-
force that only one line segment of the curve is active
at any point in time, and that the two points defining
it are subsequent. As Eq. (29) shows, both parameters
have two dimensions: one representing each lineariza-
tion point (jB) and one representing each time step
over the scheduling horizon (it).

Figure 5: Battery degradation model including both
the continuous (CO) model and the lin-
earized PWA model, using 4 and 5 discretiza-
tion points.

d[it] =

NPWA
B∑

jB=1

wB[it, jB] · dPWA[jB] (29a)

qSoC[it] =

NPWA
B∑

jB=1

wB[it, jB] · qPWA
SoC [jB] (29b)

NPWA
B∑

jB=1

wB[it, jB] = 1 (29c)

NPWA
B −1∑
jB=1

bB[it, jB] = 1 (29d)

wB[it, jB] ≤ bB[it, jB] + bB[it, jB − 1] (29e)

The cycle degradation Dcy
t in each time instant is

calculated as the difference between the degradation of
two regular cycles, as stated by Eq. (30a). This non-
linear equation is enforced using the set of linearized
constraints Eq. (30b) and Eq. (30c). The total cycle
degradation is calculated as Eq. (30d).

Dcy
t [it] = 0.5 |d[it]− d[it − 1]| (30a)

Dcy
t [it] ≥ 0.5 (d[it]− d[it − 1]) (30b)

Dcy
t [it] ≥ 0.5 (d[it − 1]− d[it]) (30c)

Dcy =

Nt∑
it=1

Dcy
t [it] (30d)

2.3 Investigative Approach
The previously described optimization problem was
implemented to achieve a flexible tool for isolated en-
ergy systems, such as a fishing vessel. The optimiza-
tion tool was built by running several rounds of op-
timization using the existing gensets and power load,
for battery sizes in the range 0–3 MWh in increments
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Table 1: Parameters for the gensets and their models and fuel. The fuel parameters are given for 25 ◦C and
1 atm.

Parameter Symbol Value (MGO) Unit Source
No. PWA points in PSFC curve NPWA

g 9 − −
Maximum No. startups NS

g 10 000 − −
Maximum number of gensets Nmax

G 4 − −
Startup time ∆tSu 15 min −
Shutdown time ∆tSd 5 min −
Idle power loading pidleg 5.5 % −
Ramping limitation ṗmax

g 40 %/min −
Ramping price crrg 1 NOK min/MW −
Expected total life TL

g 25 yr −
Expected economic running life TRL

g 80 000 h −
Fuel density ρFg 0.855 kgfuel/Lfuel −
Fuel price cFg 10 NOK/Lfuel Bunker (2024)
Fuel energy density eFg 42.7 MJ/kg −
Fuel carbon intensity kCO2

g 3.138 tCO2/tfuel −

of 100 kWh. An increasing number of constraints and
costs were included in order to address unwanted usage
of the system, as described in Sec. 2.3.1.

When completed, the tool is meant to be used for
two purposes, first for sizing and system design, and
secondly for scheduling and performance analysis. The
choice between the two applications were controlled us-
ing the input parameters, the number of components
included and the resolution of the input models and
parameters. The choice of genset configuration from
a first design stage was used further in a performance
analysis. The scheduling stage is tested as described in
Sec. 2.3.3, where a large range of genset sizes are made
available for the optimization problem to choose from.

The second stage was then run for both the baseline
system from Sec. 2.3.1 and the suggested system from
Sec. 2.3.3, in order to evaluate the fuel saving poten-
tial by running the system in a more cost-efficient way.
This is described in Sec. 2.3.4, where the results from
these two systems are compared.

A set of default parameters was set, which is used
everywhere in the presented research, where otherwise
is not explicitly stated. The genset parameters are pre-
sented in Tab. 1, which includes parameters related to
the genset and associated fuel. The battery parameters
are included in Tab. 2, and remaining parameters are
included in Tab. 3.

The maximum C-rate ṅmax
B is set in order to give

the system an available dispatchable power to handle
faster variations in the load than is included in the op-
timization problem. The battery price is set based on
a rough estimate of the total price for a battery system
with inverter from Sustainable Ships (2024), where an
inverter of 50 % higher capacity than the chosen max-
imum C-rate is used, again for the purpose of leaving
a certain available power for the quicker variations.

The results were compared to the baseline system

with the adjustment of replacing the mixed me-
chanic/electric ME+SG+Pr solution with the sug-
gested MG+M+Pr solution, in order to avoid impre-
cision introduced by the assumptions linked to this
change.

A series of tests were conducted in order to evalu-
ate the functionality of the optimization problem and
the results of applying it on data from an existing ves-
sel. These tests are presented in Tab. 4, which shows
which data selection (DS), genset selection (GS) and
different constraints and parameter values were used
in each test. Cells marked with “−” imply that the
associated constraint and/or cost is not included in
the optimization, whereas a price of 0 indicate that
the associated variable is included in the optimization
problem but not penalized in the cost function. Only
decision variables which are constrained either through
hard constraints or penalized in the cost function with
a nonzero price are included in the optimization prob-
lem, in order to limit the problem size and solver time.
Only nonzero costs are included in the cost function,
in order to limit the model size and avoid potential
numerical issues.

The three data selections are visualized in Fig. 6,
where DS2 is a subperiod of DS3. In the selected pe-
riods, only the main engine was used. The results of
the optimization was for this reason compared to the
whole load PL being delivered from the main engine.
The system is, in other words, transformed into the
same setup as the optimization is basing its analysis
on, as visualized in Fig. 3.

GS1 is the four baseline gensets PN
g , with the corre-

sponding fuel curves presented in Fig. 4: One of size
4 MW (G1), two of size 650 kW (G2–3) and one of size
326 kW (G4). GS2 has in addition to GS1 a series of
gensets available with installed power {350, 450, 550,
750, 850, 950, 1000, 1500, 2000, 2500, 3000, 3500} kW,
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Table 2: Parameter data for the battery energy storage system.
Parameter Symbol Value Unit Source
Maximum battery charge/discharge C-rate ṅmax

B 1 h−1 −
Battery price cIB 5.5 MNOK/MWh Sustainable Ships (2024)
Expected battery shelf life T sh

B 10 yr −
Initial/final SoC q0SoC 50 % −
Minimum allowed SoC qmin

SoC 20 % −
Maximum allowed SoC qmax

SoC 80 % −
Degradation model coefficient kB1 1591.1 − Wang et al. (2016)
Degradation model exponent kB2 2.089 − Wang et al. (2016)
Battery discharging efficiency ηd

B 91.0 % Fortenbacher et al. (2017)
Battery charging efficiency ηc

B 91.0 % Fortenbacher et al. (2017)

Table 3: Other system parameters.
Parameter Symbol Value Unit Source
El-motor efficiency ηM 90 % −
Price for curtailing power cCu 0 NOK −
Currency exchange rate − 11.5 NOK/EUR −
Currency exchange rate − 10.5 NOK/USD −
Carbon price cCO2 0 NOK/kgCO2 −

Table 4: Overview of the different parameters included in the different tests. The abbreviations stand for
data selection (DS), genset selection (GS), include startup/shutdown cost (ISSC), include idle power
(IIP), include curtailed power (ICP), include maximum ramp rate (IMRR) and enforce uniform power
distribution (EUPD). Eq. refers to which constraint or cost it activates.

Expl./symbol: DS GS ∆t NPWA
g Nmin

G ISSC IIP ICP IMRR EUPD
Unit: [−] [−] [min] [−] [−] [−] [−] [−] [%/min] [−]

Eq: Eq. (6a) Eq. (8), Eq. (18) Eq. (7a) Eq. (20) Eq. (11e)
Test 1A 1 1 1 5 − − − − − −
Test 1B 1 1 1 5 2 − − − − −
Test 1C 1 1 1 5 − Yes − − − −
Test 1D 1 1 1 5 − − Yes − − −
Test 1E 1 1 1 5 − − − Yes − −
Test 1F 1 1 1 5 − − − − Yes −
Test 1G 1 1 1 5 − − − − − Yes
Test 1H 1 1 1 5 2 Yes − − − −
Test 1I 1 1 1 5 2 Yes Yes − − −
Test 1J 1 1 1 5 2 Yes Yes Yes − −
Test 1K 1 1 1 5 2 Yes Yes Yes Yes −
Test 1L 1 1 1 5 2 Yes Yes Yes Yes Yes
Test 2A 2 2 5 4 4 Yes Yes Yes Yes Yes
Test 2B 2 2 1 5 4 Yes Yes Yes Yes Yes
Test 3A 3 1 5 4 4 Yes Yes Yes Yes Yes
Test 3B 3 1 1 5 4 Yes Yes Yes Yes Yes
Test 3C 3 2 5 4 4 Yes Yes Yes Yes Yes
Test 3D 3 3 1 5 4 Yes Yes Yes Yes Yes

which gives the solver flexibility to choose a suitable se-
lection of genset sizes. GS3 is a result of choices based
on test 3A, where the selection is reduced by removing
gensets which are not chosen for any battery size. Each
genset has their own PSFC curve, which for the addi-
tional gensets were set as the AG model. An overview
of the included gensets is included in Tab. 5.

In the two years of existing data, the ramp rate ex-
ceeded 20 %/min less than 0.05 % of the time for the
generators and less than 0.25 % of the time for the main
engine. The ramp rate was somewhat higher for larger

gensets than the smaller. However, in the time period
in question with chosen time resolution, the maximum
ramp rate of the total load was over 37 % of the nomi-
nal power of the main engine per minute when ∆t was
1 min and 6.7 %/min when ∆t was 5 min. An absolute
maximum ramp rate of 40 %/min was for this reason
expected to not be too restrictive, although it arguably
is a bit high if occurring often and at low loads. Maxi-
mum ramp rates of 15 and 20 %/min were tested, but
increased the solver time drastically and seemed unrea-
sonably strict considering the variations in the data.

160



Hennum et.al., “Cost-Optimal Fuel Utilization, Genset Configuration and Battery Sizing”

(a) Period DS1.

(b) Periods DS2 and DS3

Figure 6: Total electric power load for the three data
selections, with three time resolutions.

Table 5: Available gensets and their corresponding
PSFC model in each genset selection.

PN
g [kW] GS PSFC
4 000 1, 2 MG
3 500 2 MG
3 000 2 MG
2 500 2, 3 MG
2 000 2 MG
1 500 2, 3 MG
1 000 2 MG
950 2 AG
850 2 AG
750 2 AG
650 1, 2 AG
650 1, 2 AG
550 2 AG
450 2 AG
350 2, 3 AG
326 1, 2, 3 LG

The ramping price is tuned in order to try to make
the battery take a large share of the fast load variations
without ending up curtailing power.

2.3.1 Evaluation and Expansion of Optimization
Problem

The optimization was at first run several times in tests
1a–h, gradually increasing the complexity of the opti-
mization problem. This was done in order to evaluate
and address potential weaknesses by adding different
constraints to remove unwanted behaviour. At first, a
minimum genset requirement was included to address

redundancy requirements for scenarios when the genset
otherwise would choose to only install one genset. A
startup price was then added in order to limit the num-
ber of times the installed gensets would start and stop
with associated frequent ramping. A minimum genset
power was included to represent the idle power, and at
the same time the option to curtail power was included
to avoid infeasibility issues. The reasoning for setting
the price for curtailed power to 0 is that it already is
penalized indirectly through the fuel consumption.

A data selection covering 2 hours of operation was
used for the evaluation of the optimization problem. In
order to evaluate the tool effectively, a period where the
main engine was run inefficiently on low load was cho-
sen. This way, it was certain that the fuel consumption
and genset configuration would be chosen differently if
the optimization did its job.

2.3.2 Validation of Model Size Reduction

One large challenge with the optimization approach us-
ing such detailed models is the solver time. To address
this, tests 2a–b were run in order to evaluate if the
results would vary largely if the time resolution was
decreased by increasing ∆t from 1 to 5 minutes, and
the battery degradation model was made slightly less
precise, using 4 instead of 5 discretization points. This
was done with the full optimization problem from test
1h, but with a longer load series which covered a more
representative range of the current usage of the vessel.

2.3.3 Optimize Genset Configuration

The outputs from the optimization problem are in
Secs. 2.3.1 and 2.3.2 evaluated on an aggregated basis
per test for each optimization problem, to evaluate the
overall performance of the optimization problem given
different constraints and parameters. The next step
is to use the optimization problem in the two afore-
mentioned steps to first find an optimal genset config-
uration and second an optimal battery size. Tests 3A
and 3B were run in order to get results for the existing
genset configuration. Test 3C was then run to find an
optimal genset configuration, using a low resolution of
the time series and battery degradation model.

A minimum/maximum number of installed gensets
were set to 4, to force the solver to suggest a similar
genset configuration as the existing system with more
optimal installed power capacities, for comparison pur-
poses. Here, the investment costs were included for the
gensets, to limit the installed capacity.

The configuration was then used in test 3D, where
the resolution was increased in order to get more de-
tailed results. The final performance of the system
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operation in 3D was then evaluated to consider future
adjustments.

For the genset configuration, battery sizing and per-
formance analysis, a data selection covering 24 hours
of operation was used. The measurements covered a
period with power-demanding operations, where the
main engine was loaded more heavily. This data se-
lection contained power variations within a range rep-
resentative of the rest of the gathered measurements.
The data selection includes periods with both transit,
searching and trawling activities south-west of Lofoten,
Norway. The investigated journey started and ended
with the vessel far away from the coast, and it stayed
at sea the whole time.

2.3.4 Battery Sizing and Performance Analysis

A performance analysis was run to investigate the po-
tential fuel and cost savings compared to the current
usage of the baseline system. This was done for both
the baseline and alternative suggested genset configu-
rations, for a range of battery sizes. The same calcula-
tions were done on the measurements from the existing
system as for the optimized usage, as a benchmark. In
this design stage, higher resolution models and data
were used as a trade-off between result accuracy and
computational effort.

To investigate the potential that lies within utiliz-
ing the existing system more optimally, test 1j from
2.3.1 was run again. This time the minimum number
of gensets Nmin

G was set to 4, to force the installation
of all gensets regardless of what is cost-optimal given
the limited number of data points in the input load.

To investigate the potential that lies within more op-
timal sizing of the equipment and still utilizing the sys-
tem optimal given the previously presented constraints,
the analysis in Sec. 2.3.3 was run again, now again with
minimum 4 gensets installed.

3 Results and Discussions

The results from running the presented optimization
problem using data from a fishing vessel in operation
are presented in this section. At first, the behaviour
of the optimization problem, including different con-
straints and costs, is presented in Sec. 3.1. A validation
of the results using two different models and data res-
olutions are presented in Sec. 3.2 before the two-step
design and analysis process using the two resolutions is
presented in Sec. 3.3. The performance is addressed in
Sec. 3.4 before discussing different aspects of the results
further in Sec. 3.5.

3.1 Evaluation and Expansion of
Optimization Problem

The model was tested and expanded as needed, to
address a series of unwanted behaviour, and the de-
scribed behaviour is considered somewhat more inter-
esting than the values themselves in this part. This
section describes how the different constraints changed
the results. It should be noted that the optimization
framework is currently not yet tested on a large variety
of data with a large library of different gensets avail-
able, and that the behaviour described here may vary
somewhat with different load profiles.

It was observed that the solver installed as few and as
small gensets as possible, which in some cases for test
1A was only one. This happened both in cases where
only a few genset sizes were included and the battery
was small, and in cases where there were included many
genset sizes (flexible capacity choice) and the battery
capacity was large enough to let the battery serve the
peaks in the power demand.

With a low or no ramping limit, ramping cost or
startup cost, the solver chose in some situations to in-
crease the number of startups and shutdowns to 6 times
per hour. This happened mainly for large battery ca-
pacities where the battery could be used instead of one
of the gensets for longer periods, but it did at the same
time increase the solver time 800-fold when the ramp-
ing limit was included. When introducing a ramping
price which was high compared to the curtailing price,
the algorithm chose to run the gensets on a very steady,
higher than necessary loading instead of frequent rapid
ramping, while letting the variations be covered by cur-
tailment instead of adjusting the genset loading. This
was the situation when the battery size was not large
enough to cover these load variations by itself.

Additional adjustments could be to change how the
maximum allowed curtailed power is calculated, or
in other ways limit the curtailed instantaneous power
or accumulated energy further. Another adjustment
could be to relax the ramping limit and reduce the
ramping price. Further effort could be put into esti-
mating a reasonable ramping price based on the fuel
price, which is just small enough to avoid curtailing
power instead of ramping the gensets.

The ramping price was then reduced to the low
value found in Tab. 4 to address the overly steady
genset power and power curtailment. Including the
constraints Eqs. (18a) and (18b) reduced the number
of startups to maximum 1–2 and the number of shut-
downs to 0–1. At the same time the fuel reduction
became zero or negative for cases with small to no
battery capacity, and stayed around 9 % compared
to the current system, for medium to large batteries
(≥ 800 kWh) using DS-1. It further had a limiting ef-
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fect on the desired number of installed gensets by 1–2
units, installing larger gensets with a lower number of
running hours. Otherwise the results were not largely
impacted by an increased startup price, but the solver
time got reduced significantly.

One of the main challenges is the optimization time,
which could increase significantly for some combina-
tions of constraints and constraint parameters. In par-
ticular, this was a challenge with the hard ramp rate
constraint Eq. (11d), which when lowered below the
maximum ramping of the input data compared to the
MG was increased by a 400-fold.

The optimization chose to install and use only the
main genset and the emergency genset for battery sizes
below 800 kWh, whereas only the two auxiliary gensets
were chosen for larger battery sizes. The fuel savings
were purely from the battery enabling running smaller
higher loaded gensets, which was apparent from the
fuel savings not being further impacted past this point.

The introduction of a maximum ramp rate through
constraint Eq. (11e), reversed the unwanted usage
which in some cases lead to a large fuel increase. After
the startup and shutdown signals were included, this
constraint did not limit the number of starting and
stopping of gensets. It increased in some situations the
optimization time by an unreasonable amount when
included alone, but the increase was not notable when
included together with the aforementioned other con-
straints and costs.

The battery usage and degradation was increased as
the genset usage was limited more and more when the
battery was lower than 500 kWh. At this point, the
battery size got large enough for the cycling degra-
dation to become smaller than the shelf degradation.
This was the case up until the battery size got large
enough to cover the full load peak and reduce the
genset size. At this point, the total degradation in-
creased to 280 % of the shelf degradation. From this
point, the battery size increased without changing its
use remarkably, and the relative degradation did, for
this reason, get lower from this point. For battery sizes
above 2 200 MWh, the cyclic degradation again became
smaller than the shelf degradation.

Summary of the final behaviour

For small batteries, the solver chose to only run a single
large genset. When the battery size increased, this
enabled using the two AG’s. The solver time of the final
optimization model was relatively short, and managed
to not curtail power in the test scenarios 1A–L. The
fuel consumption increased slightly when the battery
capacity was small, but was instantaneously reduced by
9.2 % when the battery size enabled only using smaller
gensets. The number of startups and shutdowns were

kept to a maximum of 2 and 0, respectively.
Larger battery sizes enable fewer and smaller gensets

to be installed, with a lower total installed capac-
ity. The total number of startups and shutdowns were
higher for larger battery sizes, due to the battery in-
creasingly being used in the power-balancing of the
system, and as temporary energy-storage during op-
eration. The number of running hours was increased
due to several small gensets being run simultaneously
instead of fewer large gensets.

A power controller based on such an optimization
problem can end up increasing fuel consumption in or-
der to limit other costs. It is important to make sure
the optimization problem is properly tuned based on
the relevant load profile and variations. The aforemen-
tioned investment in smaller gensets to limit the invest-
ment and maintenance costs, and curtailment of power
in order to avoid ramping are two examples of this.

The solver avoids starting a genset before strictly
necessary, in order to save fuel and maintenance costs.
On the other hand, it avoids shutting down a genset
it started when the load increased, even when return-
ing to the same loading where it at first only ran one,
since it considers it more expensive with frequent start-
ing and stopping than running on a slightly lower fuel-
efficient loading for a period.

The maximum genset ramp rate is only 20 %/min
under operation, and this occurs less than 0.07 % of
the time. The ramp rate is below 10 %/min 99.2 % of
the time and below 5 %/min 98.4 % of the time. This
despite the maximum possible ramp rate being set to
40 %/min. More rapid ramping only occurs when start-
ing and stopping the gensets, and it is assumed that the
battery would take the even more rapid power varia-
tions by increasing the maximum C-rate. The ramping
limitation seems, for this reason, to be strict enough as
it is.

The ramp rate constraint should be softened by in-
troducing a penalized slack variable. When setting a
low ramping price, the battery is almost not used. But
when including one of 10 NOK/MW, the genset ramp-
ing is more limited and the battery is increasingly used.
It is hard to find a value for the ramping price which is
objectively better than others, although it is an option
to tune it until the results become somewhat reason-
able. Some further effort should be out into investigat-
ing reasonable ramping prices.

The idle power constraint is softened through the
opportunity to curtail power, although there is a max-
imum possible curtailment of Pmax

c available. The
results suggest that this approach works as intended
by ensuring feasible solution when the power balance
requirements, ramping limitations or other hard con-
straints become too strict.

163



Modeling, Identification and Control

3.2 Validation of Model Reduction and
Genset Configuration

The test of using two different time resolutions gave
similar but not equal results. The differences are pre-
sented in the following section.

The solver time increased significantly when using a
time resolution of 1-minute data instead of 5, partic-
ularly for small battery sizes. At the most, the solver
time was increased 280-fold. This was for a scenario
where the option to use the battery existed, but the
available battery power was low. This is more impor-
tant for the method’s feasibility than it says something
about the results themselves.

The main difference between using the two different
time resolutions is apparent from tests with a battery
size relatively small compared to the next step down in
genset size. When the time resolution is lowered, the
power peaks are somewhat smoothed, which reduces
fast variations and the highest peaks in the load. This
was observed to enable the solver to reduce the size of
both the installed gensets and the currently running
gensets and, by doing this, increase the fuel efficiency
for systems with smaller batteries in the low-resolution
situation than in the high-resolution situation. The
overall trend was, however, the same. Furthermore, the
genset configuration, fuel savings and battery degrada-
tion ended up the same when the battery size got large
enough.

The installed power capacity of the four gensets was
reduced when the battery size was increased, and this
happened for smaller batteries when the time resolu-
tion was low. This is arguably because the averaging
of the data input dampens the load variations, which
in turn puts lower strain on the genset ramping and
need for available power from the battery. It is, thus,
possible to install smaller gensets for slightly smaller
battery sizes when the time resolution is lowered.

It should be noted that the power varies considerably
more than its minute mean values. As Fig. 6 shows,
the total 10 s average power has some larger variation
and the original 1 s values have even more fluctuations,
but the difference is not extreme relative to the total
load. These variations could, however, be quite large
compared to the installed power of the battery unit and
should, thus, be taken into account when deciding on
the SoC limits in this initial design stage to get results
which can be considered representative. This shows
that a necessarily big power buffer should be given to
the battery, so it is able to take the even shorter varia-
tions. It could be a good idea to keep the C-rate as it
is in this scheduling stage, instead of letting it utilize
higher power values since the highest time resolution
here is 1 minute and the measured data is on second
basis.

The lowering of the maximum allowed C-rate for the
five-minute resolution by 1/5 was seemingly a bit strict,
considering that moving over to minute data enabled
installing smaller gensets for the same battery sizes,
despite the power variations being larger. One alter-
native route could be to find a better scaling value from
the actual frequent minute variations around the five
minute mean.

It should be noted that the step in installed genset
capacity is large, with a maximum of 500 kW, which
arguably gives a somewhat un-nuanced result. How-
ever, it is worth noting that all the current gensets are
included and the optimization still finds it the most
cost-efficient to only run the MG when no or only a
small battery is installed. This supports the current
usage of the vessel in the period. The result is that
the remaining installed 3 gensets are the smallest ones
instead of what would fit the best in certain time pe-
riods if other types of the vessel’s operations had been
included in the time series.

One notable finding is that the fuel savings are sacri-
ficed to buy smaller and thus cheaper gensets when the
battery size is increased. The solver chooses to invest
in a smaller total genset capacity and instead let the
fuel consumption increase, when the battery becomes
large enough to deal with sufficiently large power vari-
ations. This gives an increase of 10 % in fuel consump-
tion instead of a reduction. This is a weakness with
having all gensets available for the optimization solver
to choose to install or not, but illustrates an important
point when designing the system: The overall cheapest
system is not necessarily the most fuel-efficient system,
since the capital cost and other operating costs in some
situations can outweigh the advantage of minimizing
the fuel consumption.

In the range of battery sizes where the peak-shaving
effect is still too small to enable a large reduction in
installed capacity, the existing main engine and emer-
gency genset are chosen by the solver. Additionally, the
other two smallest defined gensets were installed. This
is because the solver chooses to only run on the main
engine, like the current usage and chooses to buy the
smallest and, thus, cheapest gensets to fill up the re-
quirement of using four gensets. This is another weak-
ness of the current analysis, since the results are based
on such a short time series. This might not happen
in other periods of the total time series. A natural
next step is to use a longer timeseries which is overall
more representative for the range in the operation of
the vessel.

The interesting part of implementing the two PWA
models together is that using the battery to peak-shave
the genset power can lead to more fuel-efficient op-
erations which saves cost. On the other hand, the
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power-losses and increased battery degradation from-
frequent and deep charging/discharging charging cycles
is also costly. Furthermore, this leads to a cost-balance
needed to be found between fuel-efficient genset usage
and battery usage.

The resulting genset selection and fuel reductions are
presented in Figs. 7 and 8. The five minute evaluations
are capable of suggesting the same genset installed
power capacity and approximately the same configu-
ration as the one minute evaluation. The fuel con-
sumption is not completely the same when the battery
becomes large enough, but this is not an issue consid-
ering that it is the genset configuration which is the
desired outcome of the first stage.

Figure 7: Installed gensets, for systems with different
battery sizes.

Figure 8: Change in fuel consumption compared to
current system, for systems with different
battery sizes.

The gensets and batteries must operate together to
cover both the load and the rapid variation in load. A
battery can both cover fast variations in the power load
and larger variations which enable running on smaller
gensets than the maximum load. However, installing
a large battery to cover the maximum power peaks
leads to a bad degree of utilization of the battery sys-
tem. This is costly compared to the saved stress of
the gensets and reduced fuel consumption. The choice
of battery size must take this into account. For the

current vessel, a battery power of 650 kW will cover
99.25 % and 98 % of the power variations around the
one and five minute mean values, respectively.

By excluding 1 % of the time, the total power load
has second-based power variations above the one and
five minute mean data of 580 og 900 kW, respectively.
With a C-rate of 2.5, this requires battery sizes of 232-
360 kWh.

Frequent starting and stopping engines/gensets does
not occur in the existing settings and load data. There
were some situations, however, where one single genset
was started for only one time step, a period of five min-
utes. Since frequent starting and stopping was not a
problem for the investigated load series, it is not ad-
dressed through additional constraints. A natural next
step could, however, be to implement minimum up-
time when being started and a minimum down-time
when stopped, if frequent starting/stopping in some
situations would become a problem.

3.3 Applying the Tool – System
Configuration

The optimization was run in two stages, as described
in Sec. 2.3. The first stage made a selection of gensets
for each battery size, and a group of these were cho-
sen. From running the optimization with only the cho-
sen gensets, the second optimization was used to find
a suitable battery size which gave the maximum fuel
reduction.

Fig. 9 gives an overview of which gensets are installed
for different battery sizes for tests 3A, 3B, 3C and 3D,
which are only different in terms of time/model res-
olution and available gensets. The solver chooses to
install two large gensets together with the two small-
est gensets, instead of the current largest genset. One
of the large gensets are preferably larger when the bat-
tery is excluded, as the figures show for test 3C which
has all the gensets available. This also happened for
some situations where the battery was installed but
had a small capacity.

Fig. 10 illustrates the fuel savings compared to the
current system, and shows that the system is able to
save fuel in both test 3C and 3D. Test 3C and 3D show
that a fuel reduction of around 0.9 % and 3.2 % can
be achieved even with no battery, simply from better
scaling and utilization of running gensets. The figure
further shows how the fuel savings are increased with
increased storage capacity of the battery system, and
that around 6–7 % fuel reduction can be achieved. The
solver chose here to at first only start one genset at
a high loading, and then start another one when the
power load increases, which is the main contributing
factor to the fuel savings.
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Figure 9: Installed gensets, for systems with different
battery sizes.

Figure 10: Relative change in fuel consumption com-
pared to current system, for systems with
different battery sizes.

Fig. 9 and 10 also show the results of tests 3A and
3B, which are using the current genset configuration.
Here, the solver chooses to run almost without using
the battery at all when the time resolution is low.
When the time resolution is increased, the fuel con-
sumption is increased by around 0.34 % when a battery
is included. The time series of the power distribution
reveal that this increase is due to the battery being
used to limit the ramping of the gensets, and in this
way giving a power loss which is larger than the power
saved from increased genset efficiency. Here it should
be re-iterated that the cost function is defined to min-
imize the total system cost, not to minimize the fuel
consumption or emissions alone. This suggests that if
the PMS is programmed with ramping of the gensets
in mind without considering the fuel consumption, the
overall fuel consumption could end up being increased
through charging losses of using the battery. However,
the currently presented increase of 0.34 % is small com-
pared to the fuel savings in other presented results of
6–7 %.

The battery SoC is visualized for different battery
sizes of test 3D in Fig. 11, and shows how the battery
capacity is being utilized for a selection of sizes around
where fuel savings change. The power distribution time

series show that when the battery size is low, all four
gensets are being used at some point with a number of
genset startups as high as 7 times per 24 hours. This is
arguably a high number considering that it is 24 hours
of continuous operation of the fishing vessel.

Figure 11: Battery SoC for test 3C, for a selection of
battery sizes (kWh).

Figure 12: Battery degradation relative to the shelf
degradation, for systems with different bat-
tery sizes.

Fig. 11 shows that when the battery capacity is as
low as 100 kWh, the battery only contributes when
some of the largest peaks in the power demand occur.
This occurs around hours 8–12 and 15–16, and here the
number of running hours is at 212 % compared to the
optimization horizon and the fuel reduction is limited.
When the battery size is increased to 200 kWh, the
number of startups is reduced to 5, the fuel reduction
is increased, the number of running hours is reduced
and the battery lifetime is increased through reduced
battery relative degradation. However, for such small
battery sizes, the battery is mainly used to limit rapid
ramping of gensets and not so much for peak-shaving.

Fig. 11 further shows that the battery capacity is
not fully utilized for semi-large batteries before the ca-
pacity reaches 1 200 kWh, at which point the capacity
is large enough to cover larger peaks in the demand.
What happens from this point is further presented in
the analysis section below.

The genset configurations for test 3C visualized in
Fig. 9 are remarkably similar regardless of battery ca-
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pacity when the time series of 24 hours is used. It was
the same for almost all systems with sufficiently large
batteries, with only some exceptions. When only 12
hours of data was included, this varied somewhat more
for battery capacities between 1 400 and 1 700 kWh.
This is in the lower range of where the battery capac-
ity is large enough to cover more of the slower vari-
ations. This points to the length of the time series
being important for getting unambiguous results. It
is worth noting that the two most common combina-
tions of large gensets all had the same total capacity of
3 500 kW, and that there is only one exception from the
total genset power being of this dimension for battery
sizes from 300 kWh.

When increasing the time resolution, the power vari-
ations for some situations increased enough for the cho-
sen gensets to not give feasible solutions, given the oth-
erwise unchanged input. This happened when the C-
rate was kept unchanged regardless of time resolution
and the battery was small enough to already be used
to the maximum of its capacity. This was to a large
extent solved by scaling the maximum C-rate with the
time resolution as previously described, to open for the
larger power variations in the one minute data than in
five minute data. The current way of choosing differ-
ent C-rates is not particularly exact, and a more precise
way of deciding a time resolution-dependent maximum
C-rate should be investigated further.

The genset configuration which most often occurs
for all battery sizes is assumed to be a good choice
and was used in test 3D. This increased the fuel re-
duction to 3.2 % when the battery was not included,
rapidly increasing to around 6 % for battery sizes from
300 kWh. The percentage-wise reduction of CO2 is the
same as the fuel reduction since the same fuel is used
in all cases.

As illustrated in Fig. 10, the fuel savings are in-
creased further to around 7.3 % when the battery is
increased past 1 200 kWh, at which point the battery is
large enough to make the genset run more fuel-efficient.
The cost reduction from increased fuel-efficient utiliza-
tion of the gensets must at this point be large enough to
compensate for the reduced system efficiency from tem-
porarily storing the energy in the battery. The main
reason for the fuel consumption to be reduced some-
what around 1 100 kW is that the battery at this point
becomes large enough for the emergency generator of
326 kW not to be started.

It is worth noting that the battery can play two roles.
One as a power buffer to cover short term fluctuations
in the load, which requires a high C-rate but not nec-
essarily a high energy capacity. The other one is as
an energy storage, to cover slower-varying longer last-
ing power variations which require more energy if the

C-rate also is high. When the time resolution is high,
the battery power utilization of the battery was high,
but not the changes in SoC. The battery has, in other
words, more energy to give than what is being utilized
in such a situation.

Choosing a battery capacity just above breakpoints
like the one found in Fig. 10 which saves a lot of fuel
when the battery is new is un-advisable. The battery
capacity degrades over time and should be large enough
over the whole lifetime. Considering that the SoC lim-
itations are somewhat narrow at 20 % and 80 %, one
solution could be to let this be increased to for exam-
ple 20–90 % under operation in order to have more en-
ergy available. Another approach could be to make the
battery a bit larger when new, to compensate for the
capacity reduction over time, e.g. to take into account
a 20 % drop in storage capacity over the lifetime which
increases the necessary battery capacity from 1 200 to
1 500 kWh.

The accumulated battery degradation by the end of
the optimization period is presented in Fig. 12. The
degradation is presented relative to the shelf degrada-
tion, in order to express how much more the battery
is degraded compared to not being used at all. This
is due to the degradation saying something about how
fast the ship owner needs to reinvest in a replacement
battery. Fig. 12 shows that the relative battery degra-
dation decreases with increasing battery size, except
for when the increased battery size enables different
and increased battery usage. Comparison of Figs. 10
and 12 clearly shows a trend where increased fuel sav-
ings occur when the battery is also used and, thus,
degraded more.

Considering that the resulting selections for the most
part are equal regardless of battery size, , the main dif-
ference going from test 3C to 3D is the time resolution,
where the increased resolution introduces larger power
variations which are covered by the battery. This ex-
plains the increased degradation for test 3D apparent
in Fig. 12. It is worth noting that the battery degra-
dation is the highest in tests where the fuel reduction
is the highest.

The option of power curtailment was, as previously
mentioned, included in order to address potential idle
power-issues and ramping limitation issues. This also
occurred when testing the model with different system
parameters, and increased the fuel consumption notice-
ably. However, no energy was curtailed in any of the
tests when using the final system parameters.

3.4 Analysis of Chosen System
The final chosen system configuration consisted of the
gensets PN

g ∈ {2 500, 1 000, 350, 326} kW and a bat-
tery of size 1 500 kWh. These are indicated in Figs. 9
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and 10, and the next paragraphs present the most in-
teresting detailed output from the optimization prob-
lem for this exact system. This is solely based on the
aforementioned parameters, and any challenges related
to weight or volume are not considered here.

The power distribution over time is visualized in
Fig. 13, which shows that only one genset is started at
first, with the remaining power being delivered by the
battery. The main difference between the results using
this 1 500 kWh battery with a fuel saving of 7.3 % in-
stead of a battery around 1 100 kWh with a fuel saving
of only 6 %, is a delayed startup of the second genset.
As Fig. 13 shows, the genset power is relatively smooth
compared to the power load, and the battery covers the
difference. When the ramping price was reduced, the
battery stopped contributing in some of these active
periods. The battery usage being this sensitive to the
ramping price suggests that some effort should be put
into finding estimates for this parameter which to a
larger degree is based on real costs.

Figure 13: Power balance for a system with a bat-
tery capacity of 1 500 kWh, only including
started gensets.

Figure 14: Duration curves per unit per component
for a system with a battery capacity of
1 500 kWh.

One should, arguably, be careful basing a system
design solely on such a small amount of data. In the
included data, this vessel had only short periods where
the load was relatively low. The small engines are,
thus, not started in most cases. For data series with

longer time periods with low load, the second smallest
genset might be increased in capacity in order to avoid
running the large gensets in these periods.

The power utilization of each component can be read
from the duration curves in Fig. 14, which shows that
the battery power loading rarely is over 50 %, and that
most of the battery power is not utilized. The lowest
genset loading under operation is 37 %. Testing differ-
ent battery sizes showed that the number of hours at
high part-load is increased significantly when the large
single genset is replaced in operation by the smaller
gensets.

Fig. 15 shows the baseline power distribution of each
started genset together with their fuel curve. The dis-
tribution is presented as genset hours relative to the
optimization horizion. By comparison with Fig. 16, it
is apparent that the solver chooses to run the gensets
at a higher relative loading a larger share of the time.
Two of the gensets are running at 90–100 % loading a
large portion of the time.

Figure 15: Genset loading for the existing system with-
out a battery.

Figure 16: Genset loading for a system with a battery
capacity of 1 500 kWh.

The state of charge of the battery is presented in
Fig. 17. From comparing this SoC with the power bal-
ance in Fig. 13, it is apparent that the solver considers
it optimal to increase the SoC when possible, in par-
ticular initially, and uses this accumulated energy to
postpone the startup of the second genset. The lim-
itation is here on the energy capacity of the battery,
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which is drained down to the minimum allowed SoC.
At this point the second genset was started and used
to both cover the increased load and to recharge the
battery. This can be seen from the power balance in
Fig. 13, and is even more clear from the SoC presented
in Fig. 17.

Figure 17: Battery SoC for a system with a battery
capacity of 1 500 kWh.

3.5 Further Discussion

There are some aspects and implications of the results
which should be highlighted through further discus-
sion. These are addressed in the following paragraphs.

3.5.1 Energy Storage System

It is essential not to overlook weaknesses in the method,
as they might lead to the design of systems that are un-
usable in real applications. For one, more effort needs
to be put into finding which maximum C-rate to use,
depending on the time resolution of the optimization
problem. Using the same C-rate can result in power
system configurations which becomes infeasible when
the resolution is increased. Scaling the C-rate with the
time resolution will enable the full utilization of en-
ergy capacity by covering a larger share of the slower,
large power variations. However, such scaling should
take into account how much the power fluctuations are
smoothed by the reduction in time resolution to ensure
that sufficient battery power is available for to cover
fast power fluctuations, rather than scaling it propor-
tionally with the time resolution itself.

It could further be considered to implement a varying
maximum C-rate based on the local power variation of
the second-data around the mean values, in order to
take into account that the battery should be able to
cover these fast power fluctuations. This could prove
difficult to implement in the MILP approach, but could
be included in more detailed system simulations. It
should also be taken into account which usage of the
battery is desired: backup storage only, delaying of

genset startup, helping out for fast ramping of gensets
and/or peak-shaving fast power fluctuations.

3.5.2 Power Generation Systems

One weakness of using low time resolution data, is us-
age in combination with allowing the gensets to run at
100 % loading over time, where they cannot – or should
not – serve the short-term power variations which ex-
ceed the average maximum power value over time. This
increases the need for having a sufficiently large bat-
tery capacity available to cover the power fluctuations
around that power output.

Expansion with Other Technologies: In future work
it could be of interest to expand the model with more
components and energy domains. Most trawlers today
have fuel-mechanic propulsion due to the propulsion
being one of the larger consumers in both power and
energy. Adding the mechanic connection could for this
reason be interesting for the industry.

The algorithm is flexible for implementation of al-
ternative energy technologies, where alternative fuel
curves and fuel parameters can be used to define dif-
ferent technologies. A natural next step here could be
to include and investigate systems powered by battery
together with other internal combustion technologies
fuelled by e.g. liquefied natural/bio gas (LNG/LBG),
or dual-fuels with methanol or ammonia. Fuel cells
would also be interesting to include for some appli-
cations. Furthermore, large ships like container ves-
sels and offshore service vessels might consider nuclear-
fuelled systems in the future which makes expanding
the model with nuclear reactors combined with ther-
mal storages and steam turbines something that could
be considered relevant for future work. This would
make the approach more generic and flexible for the
solutions that might come to market over the upcom-
ing years. The economic feasibility of installing reac-
tors on trawlers might be considered limited. However,
it would be interesting to evaluate. Furthermore, the
tool should be flexible to implement for other vessel
segments as well, where nuclear systems could be con-
sidered more feasible.

In order to evaluate an alternative fuel, one would
need the same presented parameters and fuel curves
presented in Tab. 1, for each of the technologies of in-
terest, and a power load from a comparable vessel.

The approach is currently limited to loading-
dependent costs linked to the fuel consumption. This
is a bit limiting considering that running the en-
gines/gensets on different loads can increase costs for
other reasons too. In future work, it might be pertinent
to consider the part-load maintenance costs. Running
the gensets on low load can lead to sooting and over
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time increased maintenance costs. On the other hand,
running the gensets long periods at close to full load-
ing can over time increase the wear and tear which fur-
ther increases the maintenance needs. Replacing the
part-load fuel curve with a part-load cost curve could
be a natural next step, which include cost for any de-
sired behaviour. In other words, include more details
in the existing linearized PWA model instead of ex-
panding the model, in order to not increase the size
of the optimization problem. This could, however, in-
crease the need for more discretization points and if so,
this increase should be considered against alternative
implementation approaches.

3.5.3 Model Resolution, Precision and
Computational Effort

The solver time proved a challenge in some cases. Run-
ning an analysis with a long load time series together
and many components with both high time resolution
and high resolution of the linearized fuel consumption
and degradation curves in the optimization might not
be realistic. This is the case for both the initial genset
configuration design stage and in the later battery siz-
ing and analysis stage. Some steps should be taken to
evaluate which parts of the input models and data can
be simplified while keeping the integrity of the results,
with the goal of scaling up the manageable scope of
investigation.

The running time of the analysis increases signifi-
cantly for large systems. Most of this time was, how-
ever, spent building the model and not for solving for
the optimal solution. This despite the model size being
reduced by lowering the resolution. This could suggest
that the current problem-based optimization formula-
tion is a major limitation when wanting to scale up the
size of the analysis. Some further effort could be put
into implementing the approach using a solver-based
optimization formulation to see if this could reduce the
heavy computational effort of the analysis.

3.5.4 Application for Energy System Design

As previously mentioned, the tool is built to be flexible
in several ways. Flexible in terms of included technolo-
gies and level of detail, but also flexible in terms of ap-
plication. Depending on the input and implementation
of the tool, different levels of analysis can be conducted
and different parties can have use of it.

One application is to run the presented genset config-
uration and battery sizing application as a static analy-
sis, for instance conducted by a ship designer. At first,
low-resolution data and models can be used to make a
rough draft of the energy system. A range of different
scenarios and components can be investigated in or-

der to find a roughly suitable one for the specific needs
of the vessel. After running the preliminary analysis,
high-resolution data and models can be used to investi-
gate the theoretically optimal utilization of the chosen
system. This usage and performance is not necessar-
ily realistic to achieve during operation due to limited
knowledge of future load fluctuations, but can still give
valuable insight into how the system should be sized
and utilized in different situations.

3.5.5 Choice of Available Gensets

A large contribution to the increasing computational
effort is the high number of parameters per each new
genset included. It is, thus, important to carefully
choose which components to include. It is crucial which
size ranges are included, but also which combinations
of sizes are available to choose from. It might, for ex-
ample, be cheaper and more practical to have two of
the same size instead of only including unique genset
sizes. This might be more sensible from a maintenance
perspective as well, making it more manageable to have
spare parts available.

Starting the genset configuration stage without a
strategic approach to what to investigate might, for
this reason not be a good option. Instead of starting
from scratch, it could be more practical to start with a
set of genset sizes found the more traditional way, and
then investigate the savings potential from changing
only some of them at the time.

Too much freedom could also, potentially, result in
impractical system configurations. The output should
for this reason always be evaluated and considered for
additional constraining or shaping of the optimization
problem. It could be a good approach to run the opti-
mization problem several times with not only different
battery sizes but also different specific gensets, itera-
tively. Instead of letting the algorithm choose to in-
stall smaller gensets and run them all at once, since
this increases the fuel consumption. Or, alternatively,
to lock one large genset to be installed. For example,
could the optimization be run to size single components
when being replaced, in order to find a more suitable
size considering the expected load in retrofit projects,
e.g. by constraining some of the MG and the AG’s to
be installed, and only let gensets in the LG size be
available for picking.

This might be the most sensible when using tradi-
tional fuels. However, if later introducing alternative
fuels, it might become necessary to start from scratch
and keep more size options open. At least in situations
where experience of what are the reasonable compo-
nent sizes is not available.
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3.5.6 Data Selection - Reference Data Set

Due to the fast-growing size of the optimization prob-
lem when including extra components, only a small
subset of the gathered power measurements are in-
cluded in this analysis. The remaining data set shows
large variations in power demand and component uti-
lization, and it was observed that the results from
the optimization are heavily dependent on the selected
time period. The included 24 hours are not necessar-
ily enough to conclude on the overall optimal energy
system configuration and emissions reduction potential
of the vessel. However, the results show some of the
underlying mechanisms in the tool and some expected
results if the data can be considered representative.

When using such a tool to design a system, it is
therefore crucial to include a load series which is rep-
resentative of the lifetime usage of the vessel. One
weakness with the method is the necessity of finding
that representative load data. However, an increasing
number of vessels have equipment for onboard contin-
uous data logging which can be gathered and used to
make a reference data set for the ship designers can
use. This should be looked into further. For trawlers,
this reference data set could consist of time series for
the propeller power demand and for the electric power
demand.

The reference data set needs to fulfil some require-
ments in order to be considered representative. It needs
to a) take into account the whole utilized power range
b) include all the relevant operating modes, c) take into
account a realistic distribution between each mode and
d) take into account the typical order in which the op-
erating modes typically occur. Alternatively, the ref-
erence data set could be generated from simulations of
the expected operation.

3.5.7 Evaluation of Results and Future Studies

The usage of the suggested optimization approach to
genset and battery sizing should be done with caution
and the behaviour of the output needs to be evalu-
ated before investing. For one, the output from the
optimization could be run through a high-resolution
time-domain simulation with a PMS/EMS system to
investigate the feasibility of the suggested system and
how much the system performance can be improved.
In particular, investigations of how the high-frequency
power fluctuations impact the instantaneous power bal-
ance could be considered to evaluate if the installed
battery size and C-rate is sufficient. A desired opera-
tional mode-based SoC profile could, for example, be
included to let the battery try and operate close to op-
timal. Looking into this further is a natural next step.

Some input parameters might need to be adjusted in

order to get the desired behaviour when the load input
varies in a different pattern, and additional constraints
might need to be included in order to remove other
unwanted behaviour which has not been uncovered or
addressed in this work.

Another next step could be to apply the tool on data
from different vessels and analyse how other ship seg-
ments can benefit from a cost-optimization based ap-
proach to system configuration design and utilization.

3.5.8 Application for PMS/EMS Design

Potentially one of the more valuable outputs from such
an optimization-based analysis is information about
which gensets are reasonable to start and have run-
ning at different times, based on different operational
modes, and which state of charge to approach in order
to be ready for realistic load variations for the cur-
rent and planned operational modes. This general ex-
perience can be used to design and tune the vessel’s
PMS/EMS, more than necessarily using the instanta-
neous power values from the optimization output them-
selves in a real-time system.

The optimal analysis can be used to find the desired
state of charge during different operational modes in
order to be ready for the probable load variations. The
tool could be used to investigate this specifically, and
the experience from the output can be used to make the
control algorithm for the battery. Here, high resolution
historic data could be used.

3.5.9 Application to Decision Support System

Another application is to use as a on-board user de-
cision support system during operations. This would
require the operator to input the expected operations
over the upcoming period. This might be challeng-
ing, since the transition between the operational modes
largely are dependent on external factors.

The results from the presented work suggest that
the largest emissions reductions during operation can
be achieved by delaying the starting of the second
genset by discharging the battery temporarily. Hav-
ing available a tool for the ship operator to use a pre-
diction of the future load conditions to schedule the
future power demand would, thus, be of high value.
However, although it might be unrealistic for a ves-
sel’s operator to have detailed knowledge of the future
power load, knowledge that postponing the startup of
a genset might reduce the fuel consumption in general
load-increasing situations is easy to implement in a real
scenario without a state of the art support system.

On the other hand, during operation the crew has
some knowledge about their plan for upcoming activi-
ties over the next few hours. Although this is impacted
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by weather, as well as found fish and catch per haul,
they do have a rough idea of future activities. This in-
formation could be combined with experience from the
optimization as to how the system should be operated.
This could be used during operations in a way where
the captain defines the planned activities over the next
hours which could auto-generate an estimated future
load profile based on historic data, which could in re-
turn give the captain suggestions on which gensets to
start or stop, and the power control unit information
on how to use the battery.

Increasing the time resolution significantly is inter-
esting when the goal is to find out the result from op-
timal usage of the system, but is not realistic in prac-
tice. Future load is hard to predict with a high degree
of certainty, especially with a high time resolution, al-
though different statistical methods and machine learn-
ing could be applied to create reasonable scenarios
based on the operational mode and values from the
last time steps. Automated or manual on-board de-
cision support systems could possibly contribute here
to generate a rough prediction some time ahead. The
application is for this reason important when choosing
a time resolution.

4 Conclusion

In this study, a MILP-based optimization approach for
selecting a genset configuration and battery size is pro-
posed and applied on measurements from an existing
trawler. The approach takes into account part-time
fuel efficiency of gensets modeled from gathered data as
PSFC-curves, and battery degradation using a model
from the literature. It has been demonstrated that
the optimization framework can suggest a sufficiently
redundant genset configuration where the number of
startups and engine hours can be limited at the same
time as reducing the fuel consumption.

The results show that the optimization tool can be
used as proposed to find a reasonable genset configu-
ration and battery capacity to achieve a cost-efficient
fuel-reduction. With the included limited power load
time series, fuel savings of 7.3 % can be achieved in a
cost-efficient manner, through a combination of bet-
ter sizing of installed gensets and postponing start-
ing installed gensets enabled by dispatching battery
power. If using the existing genset configuration, the
results imply that it is not cost-efficient to install a
battery. However, by applying the optimization ap-
proach described in this article on the gathered data
under the requirement of installing the same num-
ber of gensets, an alternative system is proposed for
the given trawler, with installed genset power capacity
PN
g ∈ {2 500, 1 000, 350, 326} kW and a battery with

installed energy capacity of 1 500 kWh.
The results suggest that a sufficiently large battery

can enable two things: 1) cover the peak power demand
which reduces the necessary capacity of both installed
and running gensets, and 2) temporarily store energy
to run installed gensets at a more fuel-optimal loading.
However, this is only if the battery has large enough
both energy capacity and power capacity. If the bat-
tery is not large enough, a larger genset needs to be
installed and run, at which point it is not necessarily
cost-efficient to use the battery for peak-shaving.

A reduction in time resolution to 5 minutes appears
to be a viable choice to limit the solver time. The re-
duction in model size gives more value to the analysis
by enabling the inclusion of a higher number of compo-
nents, than the seemingly small and predictable vari-
ations in the results and the loss in precision reduces
its value. The ramping price should be kept low in or-
der to avoid unnecessarily steady genset loading with
associated frequent curtailment of produced power.

Further effort should be put into calculating values
for the maximum battery C-rate depending on the cho-
sen time resolution and genset ramping price, as well
as options to further limit the maximum allowed genset
ramp rate without increasing the curtailed power. Al-
ternative technologies like dual-fuel systems using am-
monia, methanol or LNG should also be included in
further model expansions and case studies.
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